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Abstract

The definition of the inverse along an element was very recently in-
troduced, and it contains known generalized inverses such as the group,
Drazin and Moore-Penrose inverses. In this paper, we first prove a simple
existence criterion for this inverse in a semigroup, and then relate the
existence of such an inverse in a ring to the ring units.
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1 Introduction

In this paper, S is a semigroup and R is a ring with identity. All the definitions
are given for the semigroup S and are then used for the ring R, where the ring
multiplication acts as the semigroup law. The set of invertible elements of R
(simply called “units” in the sequel) will be denoted by R−1. As usual, for a
semigroup S, S1 denotes the monoid generated by S (R1 = R).

We say a is (von Neumann) regular in S if a ∈ aSa. A particular solution
to axa = a is called an inner inverse and denoted by a−. A solution to xax = a
is called an outer inverse. Finally, an inner inverse that is also an outer inverse
is called reflexive. The set of all inner (resp. outer, resp. reflexive) inverses of
a is denoted by a{1} (resp. a{2}, resp. a{1, 2}).

In [12] a special outer inverse, called inverse along an element, was intro-
duced in the context of semigroups. The purpose of this article is to give new
existence criteria of this inverse, notably in the context of rings, where the set
of units (invertible elements) comes into play.
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We will make use of the Green’s preorders and relations in a semigroup [8].
For elements a and b of S, Green’s preorders ≤L, ≤R and ≤H are defined by

a ≤L b ⇐⇒ S1a ⊂ S1b ⇐⇒ ∃x ∈ S1, a = xb;

a ≤R b ⇐⇒ aS1 ⊂ bS1 ⇐⇒ ∃x ∈ S1, a = bx;

a ≤H b ⇐⇒ {a ≤L b and a ≤R b}.

If ≤J is one of these preorders, then aJ b ⇔ {a ≤J b and b ≤J a}, and
Ja = {b ∈ S, bJ a} denotes the J -class of a.

We will use the following classical lemmas. Let a, b, c ∈ S.

Lemma 1.1.

a ≤L b ⇒ {∀x, y ∈ S1, bx = by ⇒ ax = ay};
a ≤R b ⇒ {∀x, y ∈ S1, xb = yb ⇒ xa = ya}.

Lemma 1.2.

ca ≤L a, ac ≤R a, aca ≤H a;

a ≤L b ⇒ ac ≤L bc;

a ≤R b ⇒ ca ≤R cb.

The definitions of group and Moore-Penrose inverse are the standard in the
literature (see, for example, [2], [9]):

1. a is group invertible if there is a# ∈ a{1, 2} that commutes with a;

2. a has a Drazin inverse aD if a positive power of a is group invertible;

3. if ∗ is an involution in S, then a is Moore-Penrose invertible if there is
a† ∈ a{1, 2} such that aa† and a†a are symmetric with respect to *.

We recall the following characterization of group invertibility in terms of
Green’s relation H (see [8], [3]): a# exists if and only if aHa2 if and only if Ha

is a group.

In this paper, we study invertibility along a fixed element, as defined recently
in [12].

Definition 1.3. Given a, d in S, we say a is invertible along d if there exists b
such that bad = d = dab and b ≤H d. If such an element exists then it is unique
and is denoted by a∥d.

This notion generalizes the usual concept of unit, as well as some well known
generalized inverses. These arise as special cases (see [12]):

1. a∥1 = a−1;

2. a∥a = a#;

3. a∥a
∗
= a†;

4. a∥a
m

= aD.
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2 A new existence criterion

In [12], the existence of an inverse of a along d was related to the existence of
certain group inverses.

Theorem 2.1. Let a, d ∈ S. Then the following are equivalent:

1. a∥d exists.

2. d ≤R da and (da)# exists.

3. d ≤L ad and (ad)# exists.

In this case,
b = d(ad)♯ = (da)♯d.

Note that if a∥d exists then d = dab = da(da)♯d and d is regular.

In this section, we prove another existence criterion, and study its implica-
tions.

Theorem 2.2. Let a, d ∈ S. Then a is invertible along d if and only if dadHd.

Proof.

⇒ Suppose a is invertible along d with inverse b. b satisfies bad = d = dab
and b ≤H d. By lemma 1.2, dad ≤H d, and we have only to prove the
converse inequality. By right compatibilty of the ≤L preorder (lemma
1.2), b ≤L d ⇒ bad ≤L dad, that is d ≤L dad. Symmetrically, d ≤R dad
and finally d ≤H dad.

⇐ Suppose dadHd. Then there exist x, y ∈ S1 such that d = dadx = ydad.
Let b = ydadx. Then b = dx = yd and b ≤H d. Straightforward computa-
tions give bad = ydad = d, dab = dadx = d, and b is the inverse of a along
d.

It follows that invertibility along an element can be interpreted as a kind of
invertibility modulo H:

Definition 2.3. Let a, d ∈ S. We say that a is an inner inverse of d modulo
H, and d is an outer inverse of a modulo H, if dadHd.

Theorem 2.2 claims that a is an inner inverse of d modulo H if and only if
a is invertible along d. We will denote d{1}[H] = {a ∈ S, dadHd} the set of
elements invertible along d. It is important to note that H is not a congruence
in general, and that this notion of invertiblity modulo H must be taken with
care (it is not an equality of H-classes in general). Nevertheless, invertibility
modulo H depends only on the H-class of d, and we can still deduce from the
previous characterization an equality regarding H-classes.
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Corollary 2.4. Let a, c, d ∈ S, cHd. Then dadHd ⇔ cacHc and in this case
a∥d = a∥c.

Proof. Assume dadHd. Then a∥d exists. By cancellation properties (lemma
1.1), a∥dad = d = daa∥d implies a∥dac = c = caa∥d, and a is invertible along c
with inverse a∥d.

Corollary 2.5.
dadHd ⇔ HdaHd = Hd

Proof. Let a ∈ d{1}[H] and c, c′ ∈ Hd. By corollary 2.4 a is invertible along c
and along c′, cacHc and c′ac′Hc′ . We have to show that cac′ ∈ Hd. But by
lemma 1.2

c ≤R c′ ⇒ cac ≤R cac′ ⇒ c ≤R cac′;

c′ ≤L c ⇒ c′ac′ ≤L cac′ ⇒ c′ ≤L cac′.

But cHc′Hd hence d ≤H cac′ ≤H d.
The converse implication is straightforward.

Applying theorem 2.2 to the classical generalized inverses we get:

Corollary 2.6. a# exists if and only if a3Ha, aD exists if and only if there
exists a positive integer m such that a2m+1Ham, and a† exists if and only if
a∗aa∗Ha∗.

Proof. We simply use the characterizations of the classical generalized inverses
in terms of inverses along an element: a# = a∥a, aD = a∥a

m

for some positive
integer m and a† = a∥a

∗
.

Note that the criterion of existence for the group inverse is classical, since
the equivalence a3Ha ⇔ a2Ha is straightforward. For the Drazin inverse, it
is also direct to prove that a2m+1Ham ⇔ am+1Ham. An element satisfying
this last equation is said to satisfy Azumaya’s property of strongly π-regularity
[1]. The link with Drazin invertibilty was made by Drazin in its seminal paper
[4]. The condition for the Moore-Penrose inverse can be derived directly from a
result of Puystjens and Robinson [16]: a† exists if and only if a ∈ aa∗R∩Ra∗a.

3 Creation of units in a ring

In the ring case, we take advantage of the ring structure to characterize the
existence of a∥d by means of a unit in the ring R and elements of d{1} (inner
inverses of d). Recall that a∥d exists implies d is regular.

We will make use of the well known Jacobson’s lemma (see for instance [11])
that traces back to his work on the radical of a ring [10]:

Lemma 3.1. 1− xy is a unit iff 1− yx is a unit, in which case (1− xy)−1 =
1 + x(1− yx)−1y.
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Theorem 3.2. Let d be a regular element of a ring R, d− ∈ d{1}. Then the
following are equivalent:

1. a∥d exists.

2. u = da+ 1− dd− is a unit.

3. v = ad+ 1− d−d is a unit.

In this case,
a∥d = u−1d = dv−1.

Proof.

(2) ⇔ (3) This is Jacobson’s lemma. Pose x = −d and y = a− d−. Then

u = 1+da−dd− = 1−xy is a unit ⇔ 1−yx = 1+ad−d−d = v is a unit.

(1) ⇒ (2) If a∥d exists then dadHd, and there exist x, y ∈ R such that d = dadx =
ydad. Since (dadd− + 1 − dd−)(dxd− + 1 − dd−) = 1 = (ydd− + 1 −
dd−)(dadd−+1−dd−) then dadd−+1−dd− is a ring unit. But dadd−+1−
dd− = 1−(1−da)dd− and by Jacobson lemma 3.1, u = dd−da+1−dd− =
1 + dd−(1− da) is a unit.

(2) ⇒ (1) We know (2) and (3) are equivalent, so assume u and v are units. Com-
putations give ud = dad = dv, hence d = u−1dad = dadv−1. This means
exactly that dadHd that is (theorem 2.2) a∥d exists.

Finally, ud = dad = dv ⇒ u−1d = dv−1. Let b = u−1d = dv−1. Then b ≤H d
and bad = u−1dad = d = dadv−1 = dab, that is b = u−1d = dv−1 = a∥d.

Corollary 3.3. Given a regular element a ∈ R, and a− ∈ a{1},

1. a# = a∥a exists if and only if a2 + 1 − aa− is a unit, or equivalently,
a2 + 1− a−a is a unit;

2. a† = a∥a
∗
exists if and only if aa∗ +1− a∗(a∗)− is a unit, or equivalently,

a∗a+ 1− (a∗)−a∗ is a unit.

These are not the classical existence criteria for the group [15] and Moore-
Penrose inverses [13]. However, we can recover the classical existence criterion
for the Moore-Penrose inverse as follows: pick (a∗)− = (a−)∗ as an inner inverse
of a∗, and just tranpose u = a∗a+ 1− (a∗)−a∗. We get u∗ = a∗a+ 1− aa− is
a unit, which is the classical relation [13].

For the group inverse, we study the invertibilty of 1 along a rather than the
invertibility of a along a to recover the classical relation [15].

Corollary 3.4. The following statements are equivalent:

1. a♯ exists (a is group invertible);

2. 1∥a exists;

5



3. a+ 1− aa− is a unit for any a− ∈ a{1}.

Proof. We already know that (2) ⇔ (3). But the equivalence of (1) and (2) fol-
lows from the characterization of group invertibility in terms of relation H, and
the existence criterion of 1∥a of theorem 2.2: a♯∃ ⇐⇒ a2Ha ⇐⇒ a1aHa ⇐⇒
1∥a∃.

4 Application: Unit regular elements

An interesting application of the previous results concerns unit regular elements.
Recall that d ∈ R is unit regular if d ∈ dR−1d. Unit-regular elements and unit-
regular rings first appeared in [7]. Unit regular elements were also studied by
Harte ([5], [6]) under the name “decomposably regular” elements. We now
prove that unit regularity modulo H is sufficient to be unit regular, and derive
existence criteria from theorem 3.2.

Theorem 4.1. Let d be a regular element of a ring R, d− ∈ d{1}. Then the
following are equivalent:

1. d ∈ dR−1d.

2. ∃a ∈ R−1, dadHd.

3. ∃a ∈ R−1, u = da+ 1− dd− is a unit.

4. ∃a ∈ R−1, v = ad+ 1− d−d is a unit.

Proof. We already know that (2), (3) and (4) are equivalent. (1) implies (2) is
trivial. Let us prove that (2) implies (1).
Let a ∈ R−1, dadHd. This means that a is invertible along d, d is regular
and by theorem 3.2, for any d− ∈ d{1}, u = da + 1 − dd− is a unit and
u−1d = a∥d. From daa∥d = d, we get dau−1d = d and d is unit regular, with
inverse x = au−1 ∈ R−1.

For instance, group invertibles elements, being unit regular moduloH (d1dHd ⇔
d is group invertible), are unit regular (see [6] for an alternative proof).

Finally, we remark that in the case of a Banach algebra A, this theorem
shows that we can take cl(A−1) (closure of the group of units) instead of A−1

in the definition of unit regular elements.

Corollary 4.2. d ∈ dA−1d ⇐⇒ d ∈ dcl(A−1)d.

Proof. The implication is straightforward. For the converse, assume that d has
a inner inverse in the closure of A−1, d− ∈ d{1}∩cl(A−1). Then exists a ∈ A−1,
||a− d−||.||d|| < 1 and v = 1+ (a− d−)d is invertible. By theorem 4.1, d is unit
regular.
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