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ON THE STRUCTURE OF SEMIGROUPS WHOSE REGULAR
ELEMENTS ARE COMPLETELY REGULAR

XAVIER MARY

Abstract. In this article, we study the structure of strongly 2-chained semigroups, which
can be defined alternatively as semigroups whose regular elements are completely regular.
The main result is a semilattice decomposition of these semigroups in terms of ideal exten-
sions of completely simple semigroups by poor semigroups and idempotent-free semigroups.

Keywords Chains of idempotents; Completely regular elements; Ideal extensions; Semi-
lattice decompositions

1. Introduction and notations

This article proposes a study of semigroups whose regular elements are completely regular.
These semigroups can also be defined by means of E-chains of idempotents of size 2. Due to
this property, they are called strongly 2-chained semigroups. Commutative semigroups and
semigroups with central idempotents are strongly 2-chained semigroups. Strongly 2-chained
semigroups also appear naturally in the study of variants semigroups (Theorem 1.3), free
idempotent-generated semigroups (Example 2.10), or in ring theory [37, 38, 39, 46, 48, 49].
Our main result is a semilattice decomposition of strongly 2-chained semigroups into poor
ideal extensions of completely simple semigroups and idempotent-free semigroups. This
result can be seen as the non-regular analog of Clifford’s theorem [14], which decomposes
completely regular semigroups into semilattices of completely simple semigroups. Up to now,
such a semilattice decomposition had only been extended to non-regular semigroups under
the additional assumption of π-regularity (where every element has a power that is regular)
[7, 9, 68, 69, 70, 74, 79, 80, 87]. Our decomposition is also applied to certain subclasses
defined by E-chains of idempotents of size 1.

We first recall the main notions of semigroup theory that will be used throughout the
article. In this paper, S denotes a semigroup, and E(S) denotes the set of idempotents of
S. By S1 we mean the monoid generated by S.

Let a be an element of a semigroup S. An element x of S that is a solution to the equation
axa = a is called an inner inverse of a, and an element x of S that is a solution to xax = x
is called an outer inverse of a. If both equations axa = a and xax = x hold, then x is called
a reflexive inverse of a. The element a ∈ S is regular if it has an inner inverse x. In this
case, b = xax is a reflexive inverse of a. A particular solution to axa = a, xax = x, ax = xa
is unique if it exists and is usually called the group inverse of a, denoted by a#. We denote
the set of regular elements of S by reg(S) and the set of group invertible elements (also
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called completely regular elements) by Gr(S). A semigroup S is (completely) regular if all
its elements are (completely) regular.

Green’s preorders and relations [35] have proved fundamental in the early development
of semigroup theory, notably in the study of regular semigroups. They are defined upon
principal (left, right, two-sided) ideals -or divisibility- as follows. For elements a and b of S

a ≤L b ⇐⇒ S1a ⊆ S1b ⇐⇒ (∃x ∈ S1) a = xb;

a ≤R b ⇐⇒ aS1 ⊆ bS1 ⇐⇒ (∃x ∈ S1) a = bx;

a ≤J b ⇐⇒ S1aS1 ⊆ S1bS1 ⇐⇒ (∃x, y ∈ S1) a = xby.

Observe that
≤J = ≤L ◦ ≤R = ≤R ◦ ≤L = ≤L ∨ ≤R .

When a ≤J b, we also say that b divides a and we denote b | a. The intersection of the
preorders ≤L and ≤R is also a preorder, denoted by ≤H. If ≤K is any of these preorders,
then aK b if a ≤K b and b ≤K a, and Ka = {b ∈ S | bK a} denotes the K-class of a. The
relations L and R commute, so that their join equals their product

D = L ∨R = R ◦ L = L ◦ R.
This enables us to describe D-classes as egg-boxes, each row (respectively column) corre-
sponding to an R-class (respectively L-class), and each case to an H-class. By Green’s
lemma [35], any two H-classes within a single D-class are isomorphic. If a D-class contains a
regular element, then all elements of the class are regular. In the following figures of egg-box
diagrams of D-classes, gray boxes will denote group H-classes, and idempotents will be bold.
As an illustration, next figure depicts the D-class of a regular element a ∈ S with reflexive
inverse b ∈ S (so that ab, ba ∈ E(S)).

a ab
ba b

Figure 1.1. D-class of a with reflexive inverse b

The following result will be fundamental in the sequel.

Lemma 1.1. [35, Theorem 7], [52, Theorem 3] Let a, b ∈ S. Then ab ∈ Ra ∩ Lb if and only
if Rb ∩ La contains an idempotent. In this case

aHb = Hab = HaHb = Hab = Ra ∩ Lb.

In particular, aH a2 (a is completely regular) if and only if Ha contains an idempotent, in
which case Ha is a group.

The first part of Lemma 1.1 is usually known as Miller and Clifford’s theorem, whereas
its last part is known as Green’s theorem. If ab ∈ Ra ∩ Lb, then one says that ab is a trace
product. Miller and Clifford’s theorem is related to the question of stability. We refer the
reader to [1, 24, 41] for a more detailled discussion regarding stable semigroups. According
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to [24], an element x of a semigroup S is right-stable (respectively left-stable) if, for all y ∈ S,
xJ xy implies xRxy (respectively xJ yx implies xL yx). An element is stable if it is both
left and right-stable, and a semigroup is (left, right) stable if each of its elements is (left,
right) stable. In a stable semigroup, D = J . In general, only the inclusion D ⊆ J holds.

Green’s preorders and relations take interesting forms when applied to idempotents, and
are a crucial notion regarding biordered sets [23, 60, 61, 62, 66]. In turn, biordered sets are
essential to study idempotent-generated semigroups, in particular the free ones. Since 1980,
numerous authors have focused on investigating these free idempotent-generated semigroups,
with a particular emphasis on their maximal subgroups [10, 33, 34, 50, 63]. More recently,
the word problem on such semigroups has also been explored [17, 18, 21]. Given e, f ∈ E(S),
it is well-known that e ≤L f if and only if ef = e, in which case we also denote e ωℓ f .
Dually, e ≤R f if and only if fe = e, in which case we also denote e ωr f . The notation
comes from the fact that the natural partial order ω on the set of idempotents of a semigroup
is defined by e ω f ⇐⇒ e ωℓ f and e ωr f . Nambooripad [60] noticed that, for all e ∈ E(S),
τ ℓ(e) : f 7→ ef (respectively τ r(e) : f 7→ fe), defined whenever f ωℓ e (respectively f ωr e), is
a partially defined idempotent transformation on the set E(S) that respects the partial orders
ωℓ and ωr. Let τ = {

(
τ ℓ(e), τ r(e)

)
|e ∈ E(S)} be this set of partial transformations. The

quadruple E =
(
E (S) , ωℓ, ωr, τ

)
is precisely the biordered set of the semigroup S. Biordered

sets can also be defined abstractly as certain quadruples E =
(
E,ωℓ, ωr, τ

)
satisfying certain

axioms [60]. Shortly after their introduction as such quadruples by Nambooripad, Clifford
has shown that the two preorders and the associated partial transformations induce naturally
and in a one-to-one fashion a partial product ∗ on the set E that satisfies further axioms.
It is now more common to call this partial algebra E = (E, ∗) a biordered set [16, 23, 61].
We will say that e and f are left associates, and write e ∼ℓ f , if e ω

ℓ f and f ωℓ e (that
is ef = e and fe = f). This is equivalent to eL f . The term “associates” traces back to
Clifford [15], who called two elements a, b ∈ S left associates if they are L-related. It was
(re)introduced by Nielsen [65] for idempotents only in the context of ring theory. Nielsen
used the notation ∼ℓ because, in the case of a ring R, e ∼ℓ f if and only if f = ue for some
invertible element u ∈ R. And, classically, two idempotents e, f of R are conjugate, denoted
e ∼ f , if f = ueu−1 for some invertible element u ∈ R. Back to the semigroup case, we
will say that two idempotents e, f ∈ E(S) are right associates, denoted e ∼r f , if e ω

r f
and f ωr e. The main reason for keeping two distinct notations L and ∼ℓ is the following:
whereas L and R commute, this is not the case for ∼ℓ and ∼r. We will denote by ∼rℓ the
product ∼r ◦ ∼ℓ; that is e ∼rℓ f if there exists h ∈ E(S) such that e ∼r h ∼ℓ f . Dually
∼ℓr=∼ℓ ◦ ∼r, that is e ∼ℓr f if there exists h ∈ E(S) such that e ∼ℓ h ∼r f .

Composition of left and right association leads to the notions of E-paths and E-chains,
introduced by Nambooripad [61] (see also [51, 57]), and of chains of associate idempotents
[38, 48], which are of great importance in ring theory. An E-path in S is a sequence of
idempotents (e1, e2, . . . , en) of S such that ei (∼r ∪ ∼ℓ) ei+1 for all i = 1, . . . , n − 1. An
equivalence relation is introduced on the set of E-paths by adding or removing inessential
idempotents, where an idempotent ei of a path (e1, e2, . . . , en) is inessential if ei−1 ∼r ei ∼r

ei+1 or ei−1 ∼ℓ ei ∼ℓ ei+1. An E-chain is then the equivalence class of an E-path relative to
this equivalence relation. It is proved in [61] that each E-chain (f1, f2, . . . , fm) has a unique
canonical representative of the form (e1, e2, . . . , en), where every vertex is essential. Such a
sequence is called an n-chain of associate idempotents in [38]. More precisely, if the chain
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starts with left associates, then e1 ∼ℓ e2 ∼r . . . en where the symbols alternate between left
and right association, and it is called a left n-chain. Dually, a chain of size n starting with
∼r is a right n-chain. Chains of associated idempotents have gained interest in ring theory,
notably because of two properties. Firstly, in the case of rings, the relation of left association
admits various interesting forms, see [38, Lemma 3.1] and [44, Section 21]. It follows that
chains of idempotents of a ring are easier to handle than in the semigroup case. For instance,
they can be characterized using some “generalized Euclidean algorithm” [37]. Secondly, they
relate to properties of direct summands of modules. Let M be a module, and let A,B be
any two direct summands of M . Then A = eM and B = fM for some e, f idempotents
of R = End(M), ring of endomorphisms of M . By definition, A = eM and B = fM are
perspective if they have a common complementary summand (A⊕C =M = B⊕C for some
submodule C of M). This holds precisely when e and f are right 3-chained [38, 48]. Along
similar lines, e ∼ℓr f and e ∼rℓ f if and only if A and B “share all their complements” [38],
meaning that for any submodule C of M , A⊕ C =M ⇐⇒ B ⊕ C =M .

In the sequel, we will also need the notion of primitive idempotents. An idempotent
e ∈ E(S) is primitive if f ω e (ef = f = fe) for some f ∈ E(S) implies e = f . A semigroup
is primitive if all its idempotents are primitive. Recall that a semigroup with no proper two-
sided ideal is called simple. Equivalently, S is simple if and only if J is the universal relation
on S. A simple semigroup with a primitive idempotent is actually a primitive semigroup and
termed completely simple. Equivalently, completely simple semigroups are the completely
regular and simple semigroups. In terms of stability, completely simple semigroups are the
stable and simple semigroups.

As is well-known, two idempotents e, f ∈ E(S) are D-related if and only if the left (equiv-
alently right) S-acts Se and Sf are isomorphic. This is also equivalent to the existence of
a, b ∈ S such that ab = e and ba = f . In this case, a′ = aba and b′ = bab are reflexive
inverses (a′b′a′ = a′, b′a′b′ = b′) such that e = a′b′ and f = b′a′. If eD f we say that e and f
are isomorphic idempotents, and write e ≃ f . Unlike association, which depends only on the
biordered set of idempotents, isomorphism depends on the ambient semigroup in general1.
As previously noted, this implies, by Green’s lemma, that the subgroups He and Hf are
isomorphic.

In this paper, we will focus on semigroups in which the regular elements are completely
regular. By Lemma 1.1, this condition is equivalent to the following property: for any two
isomorphic idempotents e, f ∈ E(S), e ∼rℓ f and e ∼ℓr f . Following the ring definition of
Khurana and Nielsen [38, Definition 3.7], we refer to such semigroups as strongly 2-chained
semigroups, meaning that any two isomorphic idempotents are related by a left 2-chain and
a right 2-chain. More precisely, we deduce from Lemma 1.1 the following result (also stated
in [48, Corollary 4.10]).

Corollary 1.2. Let S be a semigroup. The following statements are equivalent:

(1) S is strongly 2-chained;
(2) reg(S) = Gr(S) (regular elements are completely regular);

1For idempotent-generated semigroups however, two idempotents are isomorphic if and only if they are
related by a (possibly long) chain of associate idempotents. This follows from Fitz-Gerald results on regular
products of idempotents [26].
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(3) Regular D-classes of S are completely simple subsemigroups of S.

Proof. (1) ⇒ (2) : Assume (1) and let a ∈ reg(S), with reflexive inverse b. Then ab, ba are
isomorphic idempotents. By (1), ab ∼r e ∼ℓ ba for some idempotent e ∈ E(S). Since also
aR ab and aL ba, we have that a, e ∈ Rab ∩ Lba. It follows that aH e. By Lemma 1.1, a is
completely regular. Next figure depicts the D-class of a.

a, e ab
ba b

Figure 1.2. Egg-box diagram showing that a is completely regular

(2) ⇒ (3) : Assume (2) and consider a regular D-class D. Let a, b ∈ D. Then aLxR b
for some x ∈ D. As x is regular it is completely regular by (2), and Hx = La ∩ Rb contains
an idempotent by Lemma 1.1. It follows that ab ∈ Ra ∩ Lb ⊆ D by Lemma 1.1, and D is a
semigroup. As in any semigroup D ⊆ J , the semigroup D is simple. As it is also completely
regular by (2), it is completely simple.

a ab
x b

Figure 1.3. Egg-box diagram showing that ab is a trace product

(3) ⇒ (1) : Finally, assume (3) and let e, f be isomorphic idempotents of S. Consider the
regular D-class D = De. By assumption, D is a completely simple semigroup. As eD f ,
we have that eRxL f for some x ∈ D. But D is completely simple, hence x is completely
regular. By Lemma 1.1, it follows that xH g for some g ∈ E(S). Consequently, e ∼r g ∼ℓ f
and e ∼rℓ f .

e x, g
f

Figure 1.4. Egg-box diagram showing that e ∼rℓ f

By dual arguments, e ∼ℓr f , and S is strongly 2-chained. □

Strong 2-chaining can thus easily be read on the egg-box diagram of the semigroup. Recall
that for a semigroup (S, .), the variant semigroup S at a ∈ S is Sa = (S, .a) with sandwich
operation x.ay = xay. Figure 1.5 (see [19, Figure 3]) presents the egg-box diagram of the
variant semigroups T a

4 of the full transformation semigroup T4, with a = [1, 1, 2, 2] and
a = [1, 2, 2, 2]. As previously, on the figure, the group H-classes (those that contain an
idempotent) are the gray boxes. One observes two regular D-classes, whose H-classes all
contain an idempotent. Thus, T a

4 is strongly 2-chained.
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Figure 1.5. Variant semigroups T a
4 , a = [1, 1, 2, 2] (top) and a = [1, 2, 2, 2] (bottom)

By the same arguments, MJ231
32 (Z2) (semigroup of 3-by-2 rectangular matrices over the

two-element field Z2 under a certain sandwich operation) is also strongly 2-chained (Figure
1.6, see [20, Figure 4]). For a precise definition of MJ231

32 (Z2), we refer to [20, Section 4].
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Figure 1.6. MJ231
32 (Z2)

That the three previous variant semigroups are strongly 2-chained actually results from
a general phenomenon. Indeed, in each case, they are variant semigroups at idempotent
elements e ∈ E(S) such that eSe is completely regular. The following theorem was suggested
to the author by J. East.

Theorem 1.3. Let S be a semigroup, and let e ∈ E(S). Then the variant semigroup Se =
(S, .e), with sandwich operation x.ey = xey, is strongly 2-chained iff the local submonoid
eSe of S is strongly 2-chained.
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Proof. We denote any of Green’s relations K in Se with a superscript: aKe b if and only
if a and b are K-related in Se. First, suppose that the local submonoid eSe is strongly
2-chained. Let x ∈ reg(Se) be a regular element with inner inverse x′ ∈ Se. We prove
that x is completely regular in Se. By Lemma 1.1, it is sufficient to prove that xHe x. As
x = x.ex

′.ex = xex′ex, we see that xRxe and xL ex. We also observe that ex = exex′ex,
so that exR exe. Dually, xeL exe. And exe = (exe)(ex′e)(exe), so that exe ∈ reg(eSe).
By Corollary 1.2, we have that exe is completely regular in eSe, hence in S. We deduce
from Lemma 1.1 that Hexe = Rex ∩ Lxe contains an idempotent. Still by Lemma 1.1,
(xe)(ex) = xex ∈ Rxe ∩ Lex = Hx.

x, xex xe
ex exe

Figure 1.7. Egg-box diagram showing that xexH x

Thus, x = xexs for some s ∈ S1, so that x = xe(xexs)s = x.ex.e(xs
2). Therefore, it holds

that xRe x.ex. Dually, we can prove that xLe x.ex, thereby showing that x.exHe x. It
follows that x is completely regular in Se, and we conclude by Corollary 1.2.
Conversely, suppose that Se is strongly 2-chained, and let x ∈ reg(eSe). Then x = xx′x
for some x′ = ex′e ∈ eSe, and x = xex′ex. Thus, we see that x = x.ex

′.ex ∈ reg(Se).
By Corollary 1.2, we have that x ∈ Gr(Se). Therefore, there exists x# ∈ Se such that
x.ex

#.ex = x, x#.ex.ex
# = x# and x.ex

# = x#.ex. Equivalently, we have that x = xex#ex,
x#exex# = x# and xex# = x#ex. Also, as x = exe, we have that ex = xe = x. Let
x′′ = ex#e ∈ eSe2. We have that x = xex#ex = xx′′x, x′′ = ex#e = ex#exex#e = x′′xx′′

and xx′′ = exex#e = ex#exe = x′′x. This proves that x′′ is the group inverse of x in eSe.
We conclude by Corollary 1.2 that eSe is strongly 2-chained. □

In the sequel, we may consider certain standard constructions: direct products, 0-direct
unions, Rees quotients or Rees matrix semigroups with sandwich matrix P = (1). We leave
the proof of the following results as an exercise for the reader.

Lemma 1.4. Direct products (respectively 0-direct unions, Rees quotients, Rees matrix
semigroups with P = (1)) of strongly 2-chained semigroups are strongly 2-chained.

If every two isomorphic idempotents of a semigroup S are related by either a left or a
right 2-chain (that is, for all e, f ∈ E(S), e ≃ f implies e ∼ℓr f or e ∼rℓ f) then we say
that S is weakly 2-chained. We will also consider the subclasses of strongly (respectively
weakly, respectively left, respectively right) 1-chained semigroups. A semigroup is strongly
(respectively weakly, respectively left, respectively right) 1-chained if any two isomorphic
idempotents e ≃ f satisfy e ∼ℓ f and e ∼r f (respectively e ∼ℓ f or e ∼r f , respectively
e ∼ℓ f , respectively e ∼r f). The definition of chained semigroups extends to larger chains.
Results on these semigroups can be found in [48], which also discusses ring theoretical aspects.
In fact, many recent results have been proved regarding 2, 3 and 4-chained rings [30, 37, 38,
43, 46, 48, 49].

2Incidentally, we can deduce from the previous equations that x# = ex#e, so that, ultimately, x′′ = x#.
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The rest of the paper is divided as follows. In Section 2, we expose succinctly the gen-
eral theory of semilattice decompositions, and describe the finest semilattice congruence on
a semigroup. We also recall the main results obtained so far for completely regular and
completely π-regular semigroups (whose definition is recalled in Section 2). Then, in a sec-
ond time, we characterize semilattice indecomposable strongly 2-chained semigroups. We
thereby obtain a semilattice decomposition of strongly 2-chained semigroups into poor ideal
extensions of completely simple semigroups and idempotent-free semigroups. In Section 3,
we apply the results obtained in Section 2 to derive the structure of weakly and strongly 1-
chained semigroups. The case of strongly 2-chained semigroups with the additional property
that (certain) products of idempotents are idempotents is also considered.

2. Semilattices decomposition of strongly 2-chained semigroups

Decomposition of mathematical objects into smaller “simple” pieces has profoundly irri-
gated all mathematical fields. In the context of semigroup theory, semilattices decompo-
sitions play a prominent role3. By definition, a semilattice decomposition of a semigroup
S is a decomposition S =

⋃
α∈Y Sα, where Y is a semilattice (commutative semigroup of

idempotents), the Sα are pairwise disjoint semigroups, and SαSβ ⊆ Sαβ (∀α, β ∈ Y ). In this
direction, the case of completely regular semigroups can surely be considered as one of the
first (after the Rees-Sushkevich theorem on completely simple semigroups [72, 76]) and one
of the most elegant results in the realm of pure semigroup theory.

Theorem 2.1. [14, Theorem 1 and Theorem 2] Let S be a semigroup. Then the following
statements are equivalent:

(1) S is a completely regular semigroup (S = Gr(S));
(2) S is a union of groups;
(3) S is a semilattice of completely simple semigroups.

This fundamental structure theorem has been inspiring the community for decades. In
1955, Tamura and Kimura [82] proved that every semigroup has a greatest semilattice de-
composition. And one year later, Tamura [78, Theorem 7] proved that each component of
the greatest semilattice decomposition is semilattice indecomposable, where a semigroup S
is semilattice indecomposable if every semilattice homomorphic image of S is trivial. Equiv-
alently, S is semilattice indecomposable if the finest semilattice congruence is the universal
relation on S. The finest semilattice congruence was first described by Yamada [88], and
then refined by Tamura in 1972 [79]. The power divisibility relation → is defined as follows:
a → b ⇐⇒ bn ∈ S1aS1 for some n > 0. We also define →∞ as the transitive closure of →.
The main result of [79] is that the finest semilattice congruence σ on a semigroup S is the
symmetric closure of →∞:

a σ b⇐⇒ a→∞ b and b→∞ a.

3Actually, Tamura proved in 1966 [77] that the set of identities x2 = x, xy = yx, which defines semi-
lattices, is the only proper set of identities, T , that provides for any semigroup a T -decomposition into
T -indecomposable subsemigroups. This major result is a compelling explanation for the prominent role that
semilattice decompositions play in the structure theory of semigroups.
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Interestingly, Putcha proved in 1974 that one can permute transitive closure and symmetric
closure in Tamura’s construction of σ. Define − as the symmetric closure of →:

a − b⇐⇒ a→ b and b→ a.

Then σ is the transitive closure −∞ of the relation − [70, Theorem 1.1]. Other characteriza-
tions exist. In [67], Petrich describes σ in terms of completely prime ideals and filters, while

in [13], Bogdanović and Ćirić describe σ by means of principal radicals.

Some special semilattice decompositions have also been investigated by the aforementioned
authors [8, 12, 68, 69, 70, 80, 81, 83, 84]. Their decompositions rely on the Archimedean
condition, where a semigroup S is Archimedean if, for any a, b ∈ S, there exists n ∈ N such
that an ∈ S1bS1. Equivalently, S is Archimedean if and only if → is the universal relation
on S. Putcha [69, Theorem 2.2] proved in particular that a semigroup S is a semilattice of
Archimedean semigroups if and only if it satisfies condition (P ): for any a, b ∈ S, if a | b
then a2 | bm for some m ∈ N. The proof was completed by Tamura [80, Theorem 1]. In the
same article, Tamura also proved two important results. Firstly, Archimedean semigroups
are semilattice indecomposable [80, Proposition 4]. Secondly, the condition (P ) is equivalent
with transitivity of → [80, Proposition 7]. Semilattices of Archimedean semigroups are now
called Putcha semigroups [59]. An interested reader can consult [53] for a survey of the topic.

Several more decompositions have been discovered by Shevrin [74], Galbiati and Veronesi

[29, 87], and Bogdanović and Ćirić [7], which apply to semigroups satisfying a power reg-
ularity condition. A semigroup S in which every element has a power that is regular is
known as a quasi-regular semigroup, an eventually regular semigroup, or a π-regular semi-
group (where π stands for “power”). Similarly, semigroups in which every element has a
power that lies in a subgroup go by a variety of names, including epigroups, group-bound
semigroups, quasi-periodic semigroups, or completely π-regular semigroups. We shall use
the terminology “(completely) π-regular semigroups” in the sequel. Semigroups that are
both completely π-regular and Archimedean are called completely Archimedean semigroups.
The next theorem subsumes the results obtained by the aforementioned authors under the
π-regularity condition. For a comprehensive survey of the topic, we refer the reader to [9].

Theorem 2.2. [9, Theorem 5.7] Let S be a semigroup. Then the following statements are
equivalent:

(1) S is π-regular and reg(S) = Gr(S);
(2) S is completely π-regular and a semilattice of Archimedean semigroups;
(3) S is a semilattice of completely Archimedean semigroups.

Theorem 2.2 and the classes of semigroups therein need some comments.

• The semigroups of Theorem 2.2 are sometimes called Galbiati-Veronesi-Shevrin semi-
groups [5] or uniformly π-regular semigroups [9].

• π-regularity is a very general finiteness condition on semigroups, originally intro-
duced by Arens and Kaplansky [3] in the context of rings. An important result
due to Edwards [25] is that Lallement’s lemma4 [42] holds in π-regular semigroups.

4Lallement’s lemma states that every idempotent congruence class of a regular semigroup contains an
idempotent.
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Completely π-regular semigroups are a natural extension of finite and periodic semi-
groups (since any finite semigroup is periodic, and any element in a periodic semi-
group has a power that is idempotent). They are largely studied in semigroup theory
[22, 36, 45, 58, 68, 74, 75]. By [24, Proposition 7], completely π-regular semigroups
are stable. They also appear naturally in module and ring theory ([2, 4, 11, 40, 64, 86].
Algebraic algebras over a field, Artinian rings (in particular the simple ones, that are
the full matrix rings over a division ring) and perfect rings are completely π-regular.
A module satisfies Fitting’s lemma if and only if its endomorphism ring is completely
π-regular. And among commutative rings, the completely π-regular ones are those
with Krull dimension 0.

• Most proofs of Theorem 2.2 rely on the various characterizations of the finest semi-
lattice congruence σ. Another approach, used in [87], is to study directly extensions
of Green’s relations in the special case of π-regular semigroups, and then prove a
semilattice congruence property. This approach aligns more closely with Clifford’s
original approach, but tailored to π-regular semigroups. It has also been success-
fully applied in other contexts, resulting in the identification of numerous additional
semilattice decompositions through the analysis of other extended Green’s relations
[27, 47, 73].

In the following, our purpose is to improve Theorems 2.1 and 2.2 by removing the regularity
and π-regularity assumptions. To prove our semilattice decomposition theorem, we first need
the following stability result.

Lemma 2.3. Let S be a strongly 2-chained semigroup, and let x ∈ reg(S) and y ∈ S. Then:

(1) if xJ xy then xRxy;
(1’) if xJ yx then xL yx.
In particular, x is stable and Dx = Jx.

Proof. We prove (1). the proof of (1′) is dual. Let x ∈ reg(S) and y ∈ S. The semigroup S
is strongly 2-chained by assumption, so that x ∈ reg(S) is completely regular by Corollary
1.2. Therefore x admits a group inverse x#. Suppose that xJ xy. Then x = uxyv for
some u, v ∈ S1. Let e = xx#, f = (x#xyv)(x#ux). We have that x = uxyv = xx#x and
x# = x#xx#. Thus,

f 2 = (x#xyv)(x#ux)(x#xyv)(x#ux) = (x#xyv)(x#uxyv)(x#ux)

= (x#xyv)(x#xx#ux) = (x#xyv)(x#ux) = f,

and f is idempotent. Let a = (ux) and b = (x#xyvx#). Then

e = xx# = (uxyv)x# = (uxx#xyv)x# = (ux)(x#xyvx#) = ab.

Since also

f = (x#xyv)(x#ux) = (x#xyvx#)(ux) = ba,

we have that e, f are isomorphic idempotents. As ab = e, ba = f and bab = fb = be = b,
it follows that Lx ∩ Rf = Le ∩ Rf contains the regular element b. But, by Corollary 1.2,
regular elements are completely regular. It follows that b is completely regular. Thus, by
Lemma 1.1, we deduce that Hb = Lx ∩ Rf contains an idempotent. By Lemma 1.1 again,
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we have that xf ∈ Rx ∩ Lf . But xf = (xy)(vx#ux), so that xf ≤R xy. Finally, we observe
that x ≤R xf ≤R xy ≤R x, so that xRxy.

x, x#, e = ab a, xf xy
b f = ba

Figure 2.1. Egg-box diagram showing that x ∈ reg(S) is left stable

As a consequence of (1) and (1′), we see that the element x is stable. By [24, Theorem 8],
we deduce that Dx = Jx. □

Next, we consider divisibility. Recall that a | b if b ∈ S1aS1, that is b = yaz for some
y, z ∈ S1.

Lemma 2.4. Let S be a semigroup, and let x ∈ S and e ∈ E(S) be such that x | e. Then:

(1) there exists f D e such that f ≤R x;
(1’) there exists gD e such that g ≤L x.

Proof. We prove (1). The second result (1′) is dual. Let x ∈ S and e ∈ E(S) be such that
x | e. Then e = yxz for some y, z ∈ S1. Let a = (yxz)y = ey and b = (xz)(yxz) = xze.
Then ab = (yxz)3 = e3 = e. Let f = ba = xzey. Then f ≤R x. Also

f 2 = xzeyxzey = xze3y = xzey = f,

so that f ∈ E(S). It follows that e = ab and f = ba are isomorphic idempotents, that is
f D e. □

Lemma 2.5. Let S be a strongly 2-chained semigroup, and let e ∈ E(S) and x ∈ S be such
that x | e. Then xn | e for any n ≥ 1.

Proof. We prove the lemma by induction on n. For n = 1 there is nothing to prove. For
n = 2, by Lemma 2.4, there exists e′ ∈ E(S) such that e′ D e and e′ ≤R x. Choose such e′.
By definition of the preorder ≤R, it holds that e

′ = xy for some y ∈ S1. Let a = x, b = yxy
and f = ba = (yx)2 = ye′x. Then

f 2 = (yx)4 = y(xy)3x = ye′x = f,

so that f is an idempotent. Since e′ = e′2 = ab, we deduce that e′ and f are isomorphic
idempotents. By assumption, S is strongly 2-chained, and it follows that e′ ∼ℓr f and
e′ ∼rℓ f . Therefore, there exist g, h ∈ E(S) such that e′ ∼ℓ g ∼r f and e′ ∼r h ∼ℓ f . It
follows that Rf ∩Le′ and Re′ ∩Lf both contain idempotents (respectively the idempotents g
and h). Consider the product fe′ = (yx)2(xy) = (yxy)x2y. By Clifford and Miller’s theorem
(Lemma 1.1), fe′ ∈ Rf ∩ Le′ since Re′ ∩ Lf contains the idempotent h. It follows that
e′ = ufe′ for some u ∈ S1. Now e′D e so that e = vw, e′ = wv for some v, w ∈ S1. In
particular, e = e2 = vwvw = ve′w. Finally, e = ve′w = v(ufe′)w = (vuyxy)x2(yw) and
x2 | e.
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e = vw v
w e′ = wv = xy = ab h, x = a

g, b = yxy, fe′ = (yxy)x2y f = ba

Figure 2.2. Egg-box diagram showing that x2 | e

We finally prove the induction step. Let n ≥ 1, and suppose that xn | e. By applying
the previous result to x′ = xn, we obtain that (x′)2 = x2n | e, so that e = yx2nz for some
y, z ∈ S1. It follows that e = yxn+1xn−1z and xn+1 | e. □

Corollary 2.6. Let S be a strongly 2-chained semigroup, and let x ∈ S ,and e ∈ E(S) be
such that x→∞ e. Then x | e.

Proof. We first prove a reduction step. Let x, y ∈ S be such that x→ y → e. Then x | yn for
some n ≥ 1, and y | e since e is idempotent. By Lemma 2.5, yn | e. It follows that x | yn | e.
But divisibility is a transitive relation, so that x | e.
Assume now that x→∞ e. Then there exist p ≥ 1 and x1, · · · , xp ∈ S such that

x→ x1 → · · · → xp → e.

By applying the reduction step p times from the right, we obtain that x | e. □

We are now almost in a position to state and prove our main result. But first, we have to
consider the structure of a strongly 2-chained, semilattice indecomposable semigroup. Recall
that a minimal two-sided ideal of S is unique if it exists and is called the kernel of S.

Proposition 2.7. Let S be a strongly 2-chained, semilattice indecomposable semigroup
with an idempotent e ∈ E(S). Then De is the completely simple kernel of S. Also, any two
idempotents of S are isomorphic.

Proof. Consider the finest semilattice congruence σ on S. By [79], this congruence is the
reflexive closure of →∞: (∀a, b ∈ S) a σ b⇐⇒ a→∞ b and b→∞ a.
Since S is semilattice indecomposable, we have that σ is the universal relation. Consider the
regular D-class D = De of e. We prove that D is the kernel of S. To this end, let s, t ∈ S1,
dD e and let x = sdt. Then d | x by construction. Also, we have that e | d. Thus, it holds
that e | x. On the other hand, it follows from universality of σ that x →∞ e. Thus, x | e
by Corollary 2.6. We proved that e | x and x | e, that is xJ e. But S is strongly 2-chained
and e is regular, so that De = Je by Lemma 2.3. Thus, x ∈ D, and D is an ideal of S. It is
completely simple by Corollary 1.2. Consequently, D is a minimal two-sided ideal of S, that
is the kernel if S.
Finally, since a kernel is unique if it exists, any two D-classes of idempotents coincide. It
follows that any two idempotents of S are D-related (isomorphic). □

The final ingredient to our next result is the following theorem due to Tamura.
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Theorem 2.8. [78, Theorem 7] If a semilattice decomposition of a semigroup S, S =⋃
α∈Y Sα, is greatest, then each class Sα is a semilattice indecomposable semigroup. Con-

versely if each Sα is semilattice indecomposable, then such a semilattice decomposition of S
is greatest.

Now we have all the prerequisites to prove the main theorem of the paper, that describes
the greatest semilattice decomposition of a strongly 2-chained semigroup.

Theorem 2.9. Let S be a semigroup. Then the following statements are equivalent:

(1) S is strongly 2-chained;
(2) S is a semilattice of semilattice indecomposable semigroups Sα with the following prop-

erty: each Sα has at most one regular D-class Dα, that is the completely simple kernel
of the component Sα;

(3) S is a semilattice of semigroups Sα with the following property: each Sα has at most one
regular D-class Dα, that is a completely simple semigroup;

(4) Regular elements of S are completely regular.

Proof. (1) ⇒ (2) : Consider the finest semilattice congruence σ on S, and its associated
greatest semilattice decomposition. By Theorem 2.8, the components of the decomposition
(the σ-classes) are semilattice indecomposable. Since D ⊆ σ, the components of the semilat-
tice either contain no regular elements, or they contain at least one regular D-class. In the
latter case, they contain at least one idempotent (recall that any regular D-class contains at
least one idempotent).
Therefore, we consider hereafter a component T = σe of the semilattice that contains an
idempotent e ∈ E(S). We first prove that T is a strongly 2-chained semigroup. Let f, g be
isomorphic idempotents in T . Then e = ab, f = ba for some a, b ∈ T . Thus, since T ⊆ S,
we have that e and f are isomorphic in S. By strong 2-chaining, there exist h, k ∈ E(S)
such that f ∼ℓ h ∼r g and f ∼r k ∼ℓ g. In particular, f = fh and h = hf . Since σ is a
semilattice congruence, we deduce that f = fh σ hf = h. Dually, f = kf σ fk = k. Finally,
h, k ∈ T = σe = σf and T is strongly 2-chained.
We have proved that T is a strongly 2-chained, semilattice indecomposable semigroup with
an idempotent e ∈ E(S). By Proposition 2.7, De is the completely simple kernel of T .
Consider a second regular D-class D′ of T . Then it contains an idempotent f and D′ = Df .
But all idempotents of T are isomorphic by Proposition 2.7, so that f D e. Thus Df = De is
the only regular class of T .

(2) ⇒ (3) : Straightforward.

(3) ⇒ (4) : Let a ∈ S be a regular element. Then a belongs to the unique regular D-
class D of σa. By assumption, D is a completely simple semigroup, and, in particular, it is
completely regular. Consequently, a is completely regular.

(4) ⇒ (1) : This is Corollary 1.2. □

Example 2.10. Let S be an idempotent-generated, completely regular semigroup. We let
E = E(S) be its set of idempotents, and E = (E,ωℓ, ωr, τ) be its biordered set. It is known
that the free idempotent-generated semigroup IG(E) has the following properties (see for
instance [34]):
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(1) its set of idempotents E (IG (E)), usually denoted by Ē, is in one-to-one correspondence
with E (via a map ϕ). We denote by ē ∈ Ē the preimage of e ∈ E by ϕ;

(2) the bijective map ϕ : Ē → E can be uniquely extended to a surjective5 semigroup
homomorphism ψ : IG(E) ↠ S;

(3) any two idempotents ē, f̄ ∈ Ē are left (respectively right) associates if and only if e, f ∈ E
are left (respectively right) associates in S;

(4) any two idempotents ē, f̄ ∈ Ē are isomorphic in IG(E) if and only if e, f are isomorphic
in S.

As S is strongly 2-chained by Corollary 1.2, it follows from (3) and (4) that IG(E) is strongly
2-chained. By Theorem 2.1, S admits a semilattice decomposition S =

⋃
α∈Y Sα, with all

the Sα completely simple semigroups. Also, σ = J = D in this case, so that the components
Sα are the D-classes of S, and the decomposition is the greatest one.
Consider the canonical quotient map q : S ↠ S/σ = Y . Then q ◦ ψ : IG(E) ↠ S ↠ Y
provides us with a semilattice decomposition of IG(E). Denote by ρ the kernel of q ◦ ψ. By
construction, it is a semilattice congruence, and any ρ-class is of the form

Tα = (q ◦ ψ)−1(α) = ψ−1(Sα).

As Sα is completely simple, it contains an idempotent e ∈ E. By (1) and (2), ē ∈ Tα. Now,
let f̄ ∈ Ē be a second idempotent in Tα. Then f ∈ Sα and f, e are isomorphic in E. By
(4), ē and f̄ belong to the same D-class in IG(E). Finally, all components Tα induced by
the semilattice congruence ρ contain a unique regular D-class, that is a completely simple
semigroup by Corollary 1.2. This proves that ρ induces a semilattice decomposition that
satisfies the assumption (3) of Theorem 2.9.

Example 2.11. We specialize Example 2.10, and consider the setting of Example 2 in [10].
Let Y be the three-element semilattice (free semilattice generated by two elements e, f , the
last element being ef = fe = ⋆, zero of the semilattice). Y is trivially a completely regular,
idempotent-generated semigroup, with greatest semilattice decomposition Y =

⋃
α∈Y {α}.

Let E be the associated biordered set. Then IG(E) =< ē, f̄ |ē2 = ē, f̄ 2 = f̄ >⋆̄, whose
elements are words over the alphabet {ē, f̄} alternating the symbols ē and f̄ , with a zero ⋆̄
adjoined. The semilattice Y induces the semilattice decomposition IG(E) =

⋃
α∈Y Tα where:

Te = {ē} and Tf = {f̄} are completely simple semigroups; T⋆ = {⋆̄, ēf̄ , f̄ ē, ēf̄ ē, f̄ ēf̄ , · · · } has
a unique regular D-class, the idempotent ⋆̄.

Te = {ē} Tf = {f̄}

T⋆ = {⋆̄, ēf̄ , f̄ ē, ēf̄ ē, f̄ ēf̄ , · · · }

Figure 2.3. IG(E) =
⋃

α∈Y Tα

5If S is not idempotent-generated, then the result holds but without the surjectivity assumption. In this
case, the image of IG (E) by ψ is the subsemigroup S′ = ⟨E⟩ of S generated by its idempotents.
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This is, however, not the greatest semilattice decomposition of IG(E). Indeed, T⋆ is not
semilattice indecomposable. The greatest semilattice decomposition is IG(E) =

⋃
α∈Y 0 Uα,

where: Y 0 is the semilattice Y with a new zero 0 adjoined; Ue = {ē}, Uf = {f̄} and U0 = {⋆̄}
are completely simple semigroups; U⋆ = {ēf̄ , f̄ ē, ēf̄ ē, f̄ ēf̄ , · · · } has no regular element.

Ue = {ē} Uf = {f̄}

U⋆ = {ēf̄ , f̄ ē, ēf̄ ē, f̄ ēf̄ , · · · }

U0 = {⋆̄}

Figure 2.4. IG(E) =
⋃

α∈Y 0 Uα (Greatest semilattice decomposition)

Theorem 2.9 has other formulations, but we need to introduce more definitions. A semi-
group with a single idempotent is called unipotent, and poor if this unique idempotent is
a zero of the semigroup. A semigroup without idempotents is idempotent-free, or simply
an IF-semigroup. The semigroup S is E-inversive [85] (or E-dense [28]) if, for every a ∈ S,
ax ∈ E(S) for some x ∈ S. Equivalently, by [55, Theorem 3.1], S is E-inversive if any element
a has an outer inverse (bab = b for some b ∈ S). Semigroups with 0 and π-regular semigroups
are E-inversive. Indeed, if anban = an for some n ≥ 1, then a(an−1b) ∈ E(S). When a semi-
group S contains a two-sided ideal I, one can form the Rees quotient S/I, and we say that S
is an ideal extension of the semigroup I by the semigroup S/I. According to Theorem 2.9, a
strongly 2-chained semigroup S admits a greatest semilattice decomposition S =

⋃
α∈Y Sα,

where each component Sα contains either no regular D-class or a single one Dα, that is the
completely simple kernel of Sα. Thus, the semigroups Sα are either IF-semigroups, or they
are ideal extensions of the completely simple semigroup Dα by the poor semigroup Sα/Dα.
Such ideal extensions (by poor semigroups) are also called poor extensions. Poor extensions
of completely simple semigroups have been characterized by [56, Theorem 4.2] as primitive
E-inversive semigroups. Therefore, we obtain the following corollary.

Corollary 2.12. Let S be a semigroup. Then the following statements are equivalent:

(1) S is strongly 2-chained (equivalently reg(S) = Gr(S));
(2) S is a semilattice of IF-semigroups and primitive E-inversive semigroups;
(3) S is a semilattice of IF-semigroups and poor extensions of completely simple semigroups.

Moreover, we can choose the components in the previous decompositions to be semilattice
indecomposable.

Example 2.13. Let T be a poor semigroup. Let also I,Λ be two sets, and consider S =
M(I, T,Λ), the associated Rees matrix semigroup with sandwich matrix P = (1). Then
the following equality holds: reg(S) = (I, 0,Λ) = E(S). It follows that K = reg(S) is the
completely simple kernel of S, and a rectangular band. In particular, S is strongly 2-chained.
As the Rees quotient S/K is a poor semigroup, we have that S is a poor extension of the
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completely simple semigroup K. Consider T =
⋃

α∈Y Tα any semilattice decomposition of T ,
with T0 the component of 0. Then S =

⋃
α∈Y M(I, Tα,Λ) is a semilattice decomposition of S,

where the components are idempotent-free except M(I, T0,Λ), which is a poor extension of
the completely simple semigroup K. If we start with the greatest semilattice decomposition
of T , then we obtain the greatest semilattice decomposition of S.

Example 2.14. We specialize Example 2.13 as follows. Let A and B be semilattice inde-
composable IF-semigroups (for instance disjoint copies of the free monogenic semigroup),
and let T = A ∪̇ B ∪̇ 0 be the 0-direct union of A and B. Let also I,Λ be two sets and
S = M(I, T,Λ) be the associated Rees matrix semigroup with sandwich matrix P = (1).
Then S is a poor extension of the completely simple semigroup M(I, 0,Λ) by the 0-direct
union M(I, A,Λ) ∪̇ M(I, B,Λ) ∪̇ {0}. As A and B are semilattice indecomposable, we
finally deduce that the greatest semilattice decomposition of S is given by Figure 2.5.

M(I, A,Λ) M(I, B,Λ)

M(I, 0,Λ)

Figure 2.5. Greatest semilattice decomposition of M(I, A ∪̇ B ∪̇ 0,Λ)

The semigroups M(I, A,Λ) and M(I, B,Λ) are semilattice indecomposable IF-semigroups,
while M(I, 0,Λ) is a completely simple semigroup.

3. Semilattices decomposition of strongly and weakly 1-chained semigroups

In this final section, we turn our attention to certain subclasses of strongly 2-chained
semigroups. Indeed, by using Theorem 2.9 and Corollary 2.12, we will be able to obtain
a semilattice decomposition of certain strongly 2-chained semigroups enjoying additional
properties. We will first address the case of strongly and weakly 1-chained semigroups.
Then, at the end of the section, strongly 2-chained semigroups where (certain) products of
idempotents are idempotents will be studied.

Recall that, by definition, S is strongly 1-chained if isomorphic idempotents are left and
right associates. But H-classes contain at most one idempotent. Therefore, S is strongly 1-
chained if and only if isomorphic idempotents are equal. These semigroups have appeared in
the literature under the name viable semigroups [71]. We also recall the following definitions.
A homogroup is a semigroup that has a kernel which is a group. An ideal I of S is a retract
of S if there exists an homomorphism of S onto I which leaves each element of I fixed. In
this case, we also say that the extension S of I is retractive (or a retract extension). By
[32, Theorem 2.10], a homogroup is the same as a retract extension of a group. Unipotent
homogroups have been characterized by [56, Theorem 3.1] (see also [54, Theorem 4.1 and
Theorem 4.3]).

Theorem 3.1. Let S be a semigroup. Then the following statements are equivalent:

(1) S is E-inversive and has a single idempotent;
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(2) S is a poor (retract) extension of a group;
(3) S is an unipotent homogroup.

The following corollary characterizes strongly 1-chained semigroups in terms of certain
semilattice decompositions. The equivalences (3) ⇐⇒ (5) ⇐⇒ (7) were obtained directly by
Putcha and Weissglass [71, Theorem 6].

Corollary 3.2. Let S be a semigroup. Then the following statements are equivalent:

(1) S is strongly 1-chained;
(2) S is a semilattice of IF-semigroups and unipotent homogroups;
(3) S is a semilattice of IF-semigroups and unipotent semigroups;
(4) S is a semilattice of IF-semigroups and unipotent E-inversive semigroups;
(5) S is a semilattice of IF-semigroups and poor (retract) extensions of groups;
(6) Inner inverses are commuting inverses (aba = a⇒ ab = ba (∀a, b ∈ S));
(7) S is viable (ab, ba ∈ E(S) ⇒ ab = ba (∀a, b ∈ S)).

Moreover, we can choose the components in the previous decompositions to be semilattice
indecomposable.

Proof. By Theorem 3.1, (5) ⇔ (4) ⇔ (2) ⇒ (3). We prove the remaining chain of implica-
tions (3) ⇒ (6) ⇒ (7) ⇒ (1) ⇒ (5).
(3) ⇒ (6) : Supppose (3), and let a, b ∈ S be such that aba = a. Since S a semilattice of
IF-semigroups and unipotent semigroups, it follows that the isomorphic idempotents e = ab
and f = ba are in the same component. But this component is unipotent, hence e = f .
(6) ⇒ (7) : Suppose (6) and let a, b ∈ S be such that ab, ba ∈ E(S). Let a′ = aba. Then
a′ba′ = a′. It follows from (6) that a′b = ba′. But a′b = abab = (ab)2 = ab and dually,
ba′ = ba; thus, ab = ba.
(7) ⇒ (1) : Suppose (7) and let e, f be isomorphic idempotents. Then e = ab and f = ba for
some a, b ∈ S; thus, e = ab = ba = f . In particular, e ∼r f and e ∼ℓ f .
(1) ⇒ (5) : Suppose (1). Then S is strongly 2-chained, hence a semilattice of IF-semigroups
and poor extensions of completely simple semigroups by Corollary 2.12. But, by (1), iso-
morphic idempotents of S are equal. Thus, each completely simple semigroup in the decom-
position is unipotent, hence a group. □

Example 3.3. Consider the setting of Example 2.11. The semilattice Y = {e, f, ⋆} is
strongly 1-chained; Therefore, so is IG(E). The first semilattice decomposition obtained
in Example 2.11 is IG(E) =

⋃
α∈Y Tα where: Te = {ē} and Tf = {f̄} are groups; T⋆ =

{⋆̄, ēf̄ , f̄ ē, ēf̄ ē, f̄ ēf̄ , · · · } is a unipotent homogroup.
Its greatest semilattice decomposition is IG(E) =

⋃
α∈Y 0 Uα, where: Ue = {ē}, Uf = {f̄}

and U0 = {⋆̄} are groups; U⋆ = {ēf̄ , f̄ ē, ēf̄ ē, f̄ ēf̄ , · · · } is an IF-semigroup.

By similar arguments, we obtain the structure of weakly 1-chained semigroups. A left
group is a left simple semigroup (a semigroup with no proper left ideal) that contains an
idempotent. Equivalently, it is the direct product of a left zero semigroup (where ab = a for
all a, b in S) and a group. The notion of a right group is dual to that of a left group.

Corollary 3.4. Let S be a semigroup. Then the following statements are equivalent:
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(1) S is weakly 1-chained;
(2) S is a semilattice of IF-semigroups and poor extensions of left and right groups;
(3) S satisfies the quasi-identity:

aba = a⇒ {ab2a2 = a = a2b or a2b2a = a = ba2} (∀a, b ∈ S).

Proof. (1) ⇒ (2) : Assume that S is weakly 1-chained. Then S is strongly 2-chained, hence
a semilattice of IF-semigroups and poor extensions of completely simple semigroups. Let T
be one of these completely simple semigroups. It contains an idempotent, so that we have
to prove that it is left or right simple. If S is unipotent, it is a group. So, suppose that it
contains at least two distinct idempotents e, f . By weak 1-chaining, either e ∼ℓ f or e ∼r f ,
but not both (otherwise e = f). Suppose that e ∼ℓ f , and let a ∈ T . Since T is completely
simple, a is completely regular. By Lemma 1.1, aHg for some idempotent g ∈ E(T ). As T
is a completely simple, we have that e and g are isomorphic, so that e ∼ℓ g or e ∼r g by
weak 1-chaining. Symmetrically f ∼ℓ g or f ∼r g. Suppose that f ∼ℓ g. Then e ∼ℓ f ∼ℓ g
and e ∼ℓ g. Alternatively, suppose that f ∼r g. Since f and e are not right associates, we
have that e and g are not right associates. Thus, e ∼ℓ g. It follows that, in both cases,
e ∼ℓ g, and aL gL e. Finally, all elements of T are L-related to e, and T is left simple. In
the second case e ∼r f , then T would be right simple. This proves (2).

(2) ⇒ (3) : Assume (2) and let a, b ∈ S be such that aba = a. Then the isomorphic
idempotents e = ab, f = ba are in the same component, hence either L or R-related. In
the first case, ef = e and fe = f , that is ab2a = ab and ba2b = ba. Multiplying the first
equation on the right by a yields ab2a2 = aba = a. Multiplying the second equation on the
left by a yields a2b = a. The second case is dual.

(3) ⇒ (1) : Assume (3) and let e, f ∈ E(S) be isomorphic idempotents. Then e = ab and
f = ba for some a ∈ reg(S) and some reflexive inverse b of a. By (3), either ab2a2 = a = a2b
or a2b2a = a = ba2. In the first case, we have that a = ab2a2 and a2b = a. Therefore,
ab = ab2a2b = ab2a. Equivalently e = ef . Also, fe = ba2b = ba = f . Thus, e ∼ℓ f . The
second case is dual. □

The same arguments yield that S is left 1-chained if and only if S is a semilattice of
IF-semigroups and poor extensions of left groups, if and only if S satisfies the quasi-identity:

aba = a⇒ ab2a2 = a = a2b (∀a, b ∈ S).

The right case is dual.

Example 3.5. Consider the matrix semigroup

S =

(
{0, 1} N
0 {0, 1}

)
=

{(
e n
0 f

)
| e, f ∈ {0, 1}, n ∈ N

}
.

Let A /∈ {
(
1 0
0 1

)
,

(
0 0
0 0

)
} be a regular element of S. Then A =

(
1 n
0 0

)
or A =

(
0 n
0 1

)
for some n ∈ N. In particular, reg(S) = E(S). In the first case, A is idempotent and its

inner inverses are of the form B =

(
1 p
0 f

)
for some p ∈ N and f ∈ {0, 1}. It then holds

that BA = A = A2, so that

A2B2A = ABBA = ABA = A and BA2 = BA = A.
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The second case is dual, and the cases A =

(
1 0
0 1

)
or A =

(
0 0
0 0

)
are straightforward. We

thus deduce from Corollary 3.4 that S is weakly 1-chained.
We now produce a semilattice decomposition of the form of Corollary 3.4. We let Y be the
semilattice

1

∗

ℓ r

0

Figure 3.1. Semilattice Y

We let also

S1 =

{(
1 0
0 1

)}
, S∗ =

(
1 N∗

0 1

)
=

〈(
1 1
0 1

)〉
,

Sℓ =

(
0 N
0 1

)
, Sr =

(
1 N
0 0

)
, S0 =

(
0 N
0 0

)
.

Then S =
⋃

α∈Y Sα is a semilattice decomposition of S with S1 a group, S∗ a monogenic
IF-semigroup, Sℓ a left zero semigroup, Sr a right zero semigroup and S0 a poor semigroup
(precisely a nilsemigroup). As all the components are semilattice indecomposable, the de-
composition is actually the greatest semilattice decomposition of S.

S1 =

{(
1 0
0 1

)}

S∗ =

(
1 N∗

0 1

)

Sℓ =

(
0 N
0 1

)
Sr =

(
1 N
0 0

)

S0 =

(
0 N
0 0

)

Figure 3.2. Greatest semilattice decomposition of S =

(
{0, 1} N
0 {0, 1}

)
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In case the semigroup is additionally π-regular, then there are no IF-components, and the
ideal extensions are nil-extensions. We notably recover with Corollary 3.2 the semilattice
decomposition of uniformly-π-inverse semigroups (strongly 1-chained π-regular semigroups
in our terminology) into nil-extensions of groups of Bogdanović et al. [9, Theorem 5.10]. We
also derive from Corollary 3.4 that weakly 1-chained π-regular semigroups are semilattices of
nil-extensions of left and right groups. If the semigroup is regular, we recover the celebrated
result of Clifford that a completely regular semigroup with commuting idempotents (also
known as a Clifford semigroup) is a semilattice of groups. Also, weakly 1-chained regular
semigroups are semilattices of left and right groups. Some more characterizations of these
semigroups are the content of [6, Theorem 3.3]. Left (respectively right) 1-chained regular
semigroups are semilattices of left (respectively right) groups.

We finally consider some other specific subclasses of strongly 2-chained semigroups. Recall
that a rectangular band B is a semigroup satisfying the identity aba = a for all a, b in B.
Rectangular groups, which are direct products of a rectangular band and a group, lie between
completely simple semigroups and (left, right) groups. It is well-known that rectangular
groups are precisely the completely simple semigroups that are also orthodox, meaning they
are regular and their product of idempotents are idempotents [31, Theorem 1.6]. This
characterization allows us to describe semilattices of IF-semigroups and poor extensions of
rectangular groups.

Corollary 3.6. Let S be a semigroup. Then the following statements are equivalent:

(1) S is strongly 2-chained, and satisfies the quasi-identity:

aba = a⇒ a2b2a2 = a2 (∀a, b ∈ S);

(2) S is a semilattice of IF-semigroups and poor extensions of rectangular groups;
(3) S satisfies the quasi-identity:

aba = a⇒ ab2a2 = a (∀a, b ∈ S);

(3’) S satisfies the quasi-identity:

aba = a⇒ a2b2a = a (∀a, b ∈ S).

Proof. (1) ⇒ (2) : Assume (1). By assumption, S is strongly 2-chained, so that S is a
semilattice of semigroups without idempotents and poor extensions of completely simple
semigroups by Corollary 2.12. Consider one of these completely simple semigroups T , and
let e, f ∈ E(T ). As T is completely simple, it holds that D = J = T × T . Thus, eD f . It
follows that e, f are isomorphic in T , meaning that e = ab, f = ba for some a, b ∈ T with b
being a reflexive inverse of a. In particular, it holds that aba = a, so that a2b2a2 = a2 by (1).
By multiplying both sides by b on the left and on the right, we obtain that ba2b2a2b = ba2b,
which is equivalent to (fe)(fe) = fe. Hence, T is an orthodox semigroup.

(2) ⇒ (3) : Assume (2) and let a, b ∈ S be such that aba = a. Firstly, as rectangular
groups are completely simple, S is strongly 2-chained by Corollary 2.12. By Corollary
1.2, the regular element a is then group invertible, with group inverse a#. Secondly, the
isomorphic idempotents ab and ba are in the same component since D ⊆ J ⊆ σ, finest
semilattice congruence. Finally, since rectangular groups are orthodox, the product (ba)(ab)
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is idempotent; therefore, ba2b2a2b = ba2b. Multiplying both sides by a on the left and on the
right yields a2b2a2 = a2. Multiplying on the left by a# yields ab2a2 = a.

(3) ⇒ (1) : Assume (3) and let a, b ∈ S be such that aba = a. Then ab2a2 = a by (3),
and multiplying on the left by a yields a2b2a2 = a2. We now prove that the regular element
a of S is completely regular. Since ab2a2 = a, it follows that aL a2. Let b′ = bab. Then
b′ab′ = b′, and we deduce that b′a2b′2 = b′ by (3). Multiplying both sides by a on the left
and on the right yields a2b′2a = ab′a = a and aR a2. Finally, aH a2. It follows that a is
completely regular by Green’s theorem (Lemma 1.1). We conclude by Corollary 1.2 that S
is strongly 2-chained.

Finally, observe that (1) and (2) are self-dual statements. Thus they are also equivalent
to the dual statement (3′) of (3). □

Example 3.7. Consider the semigroup of Example 2.13. We observed that S = M(I, T,Λ)
is a poor extension of the completely simple semigroupK = M(I, 0,Λ), withK a rectangular
band. Thus statement (2) of Corollary 3.6 is valid, and (3) should also be valid. We prove
directly that the quasi-identity aba = a ⇒ ab2a2 = a is satisfied. So, let a, b ∈ S be such
that aba = a. Then a is regular, hence a ∈ K = reg(S). As K is an ideal of S, we have that
ba ∈ K. Finally, we deduce that ab2a2 = a(ba)a = a since K is a rectangular band.

More specifically, it may happen that the whole of E(S) is closed under product (one says
that S is an E-semigroup), or even a commutative set (S is E-commutative).

Proposition 3.8. Let S be a semigroup. Then:

(1) S is strongly 2-chained and an E-semigroup if and only if reg(S) is a completely regular
and orthodox subsemigroup of S;

(2) S is strongly 2-chained and E-commutative if and only if reg(S) is a Clifford subsemigroup
of S, if and only if S is strongly 1-chained and an E-semigroup.

Proof. If S is E-commutative or an E-semigroup, then products of idempotents are idem-
potents hence regular. As is well known, this implies that products of regular elements are
regular.

(1) Suppose that S is strongly 2-chained and an E-semigroup. Then reg(S) is a subsemigroup
of S. It is completely regular by Corollary 1.2. It is orthodox as a regular E-semigroup.
The converse implication is straightforward by Corollary 1.2.

(2) To prove (2), we prove a chain of implications.
Firstly, suppose that S is strongly 2-chained and E-commutative. Then reg(S) is a
subsemigroup of S. It is completely regular by Corollary 1.2. As it is also E-commutative,
it is a Clifford semigroup.
Secondly, suppose that reg(S) is a Clifford semigroup. Then it is a semilattice of groups.
Let e = ab and f = ba be isomorphic idempotents. Then e, f are idempotents in the same
group, hence they are equal. It follows that S is strongly 1-chained and E-commutative,
let alone an E-semigroup.
Finally, suppose that S is strongly 1-chained and an E-semigroup. Then S is trivially
strongly 2-chained. Let e and f be idempotents of S. As S is an E-semigroup, we have
that ef and fe are idempotents. They are isomorphic by construction, hence equal by
strong 1-chaining. □
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13. M. Ćirić and S. Bogdanović, Semilattice decompositions of semigroups, Semigroup Forum 52 (1996),
no. 2, 119–132.

14. A.H. Clifford, Semigroups admitting relative inverses, Ann. Math. (1941), 1037–1049.
15. , A class of d-simple semigroups, Am. J. Math. 75 (1953), no. 3, 547–556.
16. , The fundamental representation of a regular semigroup, Semigroup Forum 10 (1975), no. 1,

84–92.
17. Y. Dandan, I. Dolinka, and V. Gould, A group-theoretical interpretation of the word problem for free

idempotent generated semigroups, Adv. Math. 345 (2019), 998–1041.
18. I. Dolinka, Elaborating the word problem for free idempotent-generated semigroups over the full transfor-

mation monoid, 105 (2022), no. 3, 693–718.
19. I. Dolinka and J. East, Variants of finite full transformation semigroups, Internat. J. Algebra Comput.

25 (2015), no. 08, 1187–1222.
20. , Semigroups of rectangular matrices under a sandwich operation, 96 (2018), no. 2, 253–300.
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