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Abstract

In this paper, we provide equivalent conditions for the two-sided reverse order law

for the group inverse: (ab)# = b#a# and (ba)# = a#b#, in semigroups and rings.

Moreover, we prove that under finiteness conditions, these conditions are also equivalent

with the one-sided reverse order law (ab)# = b#a#.
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Introduction

The ordinary reverse order law (in a monoid M) states that for two invertible elements of

M (elements admitting an inverse a−1 that satisfies aa−1 = 1 = a−1a), their product is also

invertible and expressed as the product of the inverses, in reverse order. That is:

(Reverse Order Law)



If a and b are invertible, then ab is invertible and (ab)−1 = b−1a−1.

Since the pioneering work of Von Neumann [35], various generalizations of ordinary

invertibility and the ordinary inverse have been studied in semigroups and rings (with or

without a unit). In this paper, we study the reverse order law for the group inverse. The

group inverse admits different characterizations, one of which being as follows. Let S be a

semigroup. An element a of S is group invertible if it belongs to some subgroup Ga of S,

and its group inverse a# is then defined as its inverse in the subgroup Ga. Such an inverse,

if it exists, is unique, and is also characterized by the following three equations:

aa#a = a (0.1)

a#aa# = a# (0.2)

aa# = a#a (0.3)

The following examples show that the reverse order law does not hold in general for the

group inverse.

Example 0.1. Consider S the free semigroup generated by two idempotents e and f (e2 = e

and f2 = f). Then the only subgroups of S are {e} and {f} and ef is not group invertible,

whereas e and f are.

Example 0.2. Consider S =M2(R) and let a =

1 1

1 1

, b =

1 0

0 0

. Then Ga = R∗a,

Gb = {b} and Gab = {ab} are subgroups of S (note that b and ab are idempotents), and

a# = 1
4a, b# = b, (ab)# = ab =

1 0

1 0

. However (ab)# 6= b#a# as b#a# = 1
4

1 1

0 0

.

The purpose of the article is to give necessary and sufficient conditions under which

the reverse order law for the group inverse holds locally, that is for given elements a and

b. Semigroups sharing this property for all elements will then be deduced from the local

statement. The study of the reverse order law for inverses traces back to the work of Greville



[17], who studied the reverse order law for the Moore-Penrose inverse of a matrix (where

the Moore-Penrose inverse of a matrix A is an element A† satisfying the four conditions

AA†A = A, A†AA† = A†, (AA†)∗ = AA† and (A†A)∗ = A†A [31]). Since then, a large

amount of work has been devoted to the study of this problem, and equivalent conditions

for the Moore-Penrose inverse reverse order law to hold have been proved in the setting of

matrices, operators, or elements of rings with involution (see [4], [27] and references therein).

In contrast, only a few studies have been conducted regarding the group inverse [5], [6], [11],

[26], and the results either involve the knowledge of some group inverses (a#, b#, (a#ab)#,

see [11] and [26], or conditions on the ring (ring of complex matrices [5], of matrices over a

Bezout domain [6], or of operators [11]).

This article is divided as follows: in Section 1, we introduce the necessary definitions

and notations, together with some preliminary lemmas. In Section 2, we prove equivalent

conditions for the two-sided reverse order law (for the group inverse)

ab and ba are group invertible and (ab)# = b#a#, (ba)# = a#b#

in full generality for semigroups. And in Section 3, we prove that these conditions are also

equivalent with the one-sided reverse order law

ab is group invertible and (ab)# = b#a#

under finiteness conditions, either local (ba is group invertible) or global (S is (left) stable,

R is Dedekind finite). Section 4 concludes with some general comments.

1 Notations, defintions and useful lemmas

In this paper, S is a semigroup and R is a ring with identity. All the definitions given for the

semigroup S then apply to the ring R. S1 denotes the monoid generated by S (R1 = R) and



for any subset A ⊆ S, A′ = {x ∈ S, xa = ax (∀a ∈ A)} denotes the commutant (centralizer)

of A, and A′′ its bicommutant.

Let a ∈ S. We say a is (von Neumann) regular if a ∈ aSa. A particular solution to

axa = a is called an inner inverse, or associate, of a. A solution to xax = x is called an outer

(or weak) inverse. An element that satisfies axa = a and xax = x is called an inverse (or

reflexive inverse) of a. Any regular element admits an inverse (namely the element a′ = xax

whenever axa = a). Among regular elements, we will mainly be interested in completely

regular elements. The element a is completely regular if there exists an inner inverse x of

a commuting with a. In this case, a′ = xax is an inverse of a that commutes with a. A

commuting inverse (or relative inverse), if it exists, is unique and denoted by a#. For a

completely regular element a, we pose a0 = a#a = aa#. The element a is group invertible

if it belongs to a subgroup Ga of S. Obviously, any completely regular element belongs to

the subgroup Ga of S generated by {a, a#} hence is group invertible (and its inverse in Ga

is a#). Conversely, if a is group invertible with inverse a′ ∈ Ga, then aa′ = a′a = 1Ga and

aa′a = 1Ga
a = a, a′aa′ = 1Ga

a′ = a′, whence a′ is the commuting inverse of S. An element

is then completely regular if and only if it belongs to some subgroup of the semigroup. For

this reason, completely regular elements are also called group invertible elements, or simply

group elements, and a# is called the group inverse of a. Finally, a is Drazin invertible if ak

is group invertible for some k ≥ 1 [13]. The smallest of such k is called the Drazin index of

a and we note i(a) = k (in particular, a is group invertible if and only if its Drazin index is

1).

Next lemma will be useful in the sequel (see [2] or corollary 12 in [24] for the third point):

Lemma 1.1. Let a ∈ S be a completely regular element. Then

1. a0 is idempotent;



2. a = a2a# = a#a2;

3. a# ∈ {a}′′.

We say that a semigroup S is (completely) regular if all its elements are (completely)

regular. S is inverse if every element a ∈ S admits a unique inverse a′. A completely regular

and inverse semigroup is called a Clifford semigroup. It is known that:

• A semigroup S is inverse if and only if it is regular and idempotents commute ([19],

Theorem 5.1.1);

• In an inverse semigroup, (ab)′ = b′a′ ([19], Proposition 5.1.2);

• A semigroup is a Clifford semigroup if and only if it is regular and its idempotents are

central if and only if it is a (strong) semilattice of groups ([19], Proposition 4.2.1).

We will make use of the Green’s preorders and relations in a semigroup [16]. For elements

a and b of S, Green’s preorders ≤L, ≤R, ≤J and ≤H are defined by inclusions of (left, right,

two-sided) principal ideals:

a ≤L b⇐⇒ S1a ⊆ S1b⇐⇒ ∃x ∈ S1, a = xb;

a ≤R b⇐⇒ aS1 ⊆ bS1 ⇐⇒ ∃x ∈ S1, a = bx;

a ≤J b⇐⇒ S1aS1 ⊆ S1bS1 ⇐⇒ ∃x, y ∈ S1, a = xby;

a ≤H b⇐⇒ (a ≤L b and a ≤R b) .

If ≤K is one of these preorders, then K≤a = {b ∈ S, b ≤K a} denotes the set of minorants

of a, aKb⇔ {a ≤K b and b ≤K a} the equivalence relation determined by the preorder and

Ka = {b ∈ S, bKa} the K-class of a. Note that L≤a = S1a, R≤a = aS1, J≤a = S1aS1 and

H≤a = S1a ∩ aS1.

We will use the following classical lemmas.



Lemma 1.2 (Cancellation). Let S be a semigroup and a, b ∈ S. Then

a ≤L b⇒
(
∀x, y ∈ S1, bx = by ⇒ ax = ay

)
;

a ≤R b⇒
(
∀x, y ∈ S1, xb = yb⇒ xa = ya

)
.

Lemma 1.3. Let S be a semigroup and a, b ∈ S, c ∈ S1. Let also ≤K be any of the preorders

≤L,≤R,≤J ,≤H.Then

ca ≤L a, ac ≤R a, aca ≤K a;

a ≤L b⇒ ac ≤L bc (Right congruence);

a ≤R b⇒ ca ≤R cb (Left congruence).

We recall the following characterization of group invertibility in terms of Green’s relation

H and inverses (Theorem 2.2.5 and Theorem 2.3.4 in [19] or Corollary 3 and Corollary 4 in

[25]):

Theorem 1.4. Let a, a′ be elements of a semigroup S. Then

1. a# exists if and only if aHa2 if and only if Ha is a group.

2. Let a′ be an inverse of a. Then aa′ = a′a if and only if aHa′.

Next lemma will also be useful:

Lemma 1.5. Let a, b ∈ S, with a completely regular. Then

ab = aba#a⇔ ab ≤L a

b = aa#ba⇔ ba ≤R a

Proof. Assume ab = aba#a. Then ab ≤L a. Conversely, assume that ab ≤L a. Then by

Lemma 1.2, as a = a(a#a) then ab = aba#a. Dually, ba = aa#ba⇔ ba ≤R a.



2 Two-sided reverse order law for the group inverse in

a semigroup

In this section, we consider the two-sided reverse order law for the group inverse, that is,

for two group elements a and b:

(Two-sided Reverse Order Law for the Group Inverse)

ab and ba are group invertible and (ab)# = b#a#, (ba)# = a#b#.

Lemma 2.1. Let a, b ∈ S be group elements such that ab ≤R b and ba ≤L b. Then

abb#a# = b#baa#.

Proof. By Lemma 1.5, ab = bb#ab and ba = bab#b. Then

(ab)b#a# = (bb#ab)b#a# = b#(babb#)a# = b#(ba)a#.

Lemma 2.2. Let a, b ∈ S be group elements such that ab ∈ L≤a∩R≤b and ba ∈ L≤b∩R≤a.

Then ab and ba are group invertible and (ab)# = b#a#, (ba)# = a#b#.

Proof. First, by Lemma 1.5, ab = bb#ab = aba#a and ba = bab#b = aa#ba, and by Lemma

2.1, abb#a# = b#baa# and baa#b# = a#abb# (by symmetry).

We start by commutation:

(ab)b#a# = b#(ba)a# = b#(aa#ba)a# = b#a#(abaa#) = b#a#ab

Note that by symmetry baa#b# = a#b#ba. Second, we focus on inner invertibility.

(abb#a#)ab = (b#a#ab)ab = b#(a#aba)b = b#bab = ab



We finally adress outer invertibility. As abb#a# = b#baa# = b#a#ab and baa#b# = a#abb#

then

b#baa# = b#a#ab = (b#a#ab)b#b = (b#baa#)b#b = b#b(aa#b#b)

= b#b(baa#b#) = baa#b# = a#abb#

Finally

b#a#abb#a# = b#(a#abb#)a# = b#(b#baa#)a# = b#a#

The statement for ba follows by symmetry.

Lemma 2.3. Let a, b ∈ S be group elements such that ab is group invertible and (ab)# =

b#a#. Then ab ≤H ba.

Proof. Assume (ab)# = b#a#. Then abHb#a# by Theorem 1.4. As bb#b#a# = b#a# =

b#a#aa# then by cancellation properties (Lemma 1.2) bb#ab = ab = abaa#. It follows that

ab = bb#a#aab = b(ab)#abb#ab = bab(ab)#b#ab

and ab ≤R ba. Dually,

ab = abbb#a#a = aba#ab(ab)#a = aba#(ab)#aba

Finally ab ≤H ba.

Combining these lemmas we get the following theorem:

Theorem 2.4. Let a, b ∈ S be group elements. Then the following statements are equivalent:

1. ab and ba are group invertible with (ab)# = b#a#, (ba)# = a#b#;

2. abHba;

3. (∃x, y ∈ S1) ab = bxa and ba = ayb (ab ∈ bS1a and ba ∈ aS1b);

4. ab ∈ L≤a ∩R≤b and ba ∈ L≤b ∩R≤a;



5. ab, ba ∈ H≤a ∩H≤b;

6. a0 ∈ {b}′ and b0 ∈ {a}′;

7. a0, b0 ∈ {a, a#, a0, b, b#, b0}′;

8. The subsemigroup C of S generated by {a, a#, b, b#} is a Clifford semigroup.

Proof. [(1)⇒ (2)] By Lemma 2.3.

[(2) ⇒ (3)] Assume ab ≤H ba. Then exists x, y ∈ S1, ab = bax = yba. As bb#b = b then

ab = bax = bb#bax = b(b#yb)a. By symmetry, ba ∈ aS1b.

[(3)⇒ (4)] As ab = bxa then ab ∈ L≤a ∩R≤b, and as ba = ayb then ba ∈ L≤b ∩R≤a.

[(4) ⇒ (5)] Assume ab ∈ L≤a ∩ R≤b. As also ab ≤L b and ab ≤R a by Lemma 1.3, then

ab ∈ H≤a ∩H≤b. Symmetrically, ba ∈ H≤a ∩H≤b.

[(5)⇒ (1)] Assume ab, ba ∈ H≤a ∩H≤b. Then ab ∈ L≤a ∩R≤b and ba ∈ L≤b ∩R≤a and

by Lemma 2.2, ab and ba are group invertible with (ab)# = b#a#, (ba)# = a#b#.

[(1) ⇒ (6)] Assume (ab)# = b#a#, (ba)# = a#b#. Then abb#a# is the unit of Hab,

and baa#b# the unit of Hba. As (1) and (1) ⇒ (2) then abHba. As abHba then

abb#a# = baa#b# (by unicity of a unit in a group). As (2) and (2) ⇒ (3) then

ab ∈ R≤b and ba ∈ L≤b hence ab = bb#ab and ba = bab#b by Lemma 1.5 and we

get (ab)(b#a#) = (bb#ab)(b#a#) = b#(bab#b)a# = b#baa#. Symetrically, baa#b# =

a#abb#, hence

abb#a# = b#a#ab = b#baa# = baa#b# = a#b#ba = a#abb#.

Finally, abb# = (aa#a)bb# = a(a#abb#) = a(a#b#ba) = (aa#b#b)a = (b#baa#)a =

b#b(aa#a) = bb#a and symetrically, baa# = aa#b.



[(6)⇒ (7)] Assume a0 ∈ {b}′. As b# ∈ {b}′′ by Lemma 1.1, then b# commutes with a0. As

b, b# commute with a0 so does their product and a0 ∈ {b, b#, b0}′. As obviously a0 ∈

{a, a#, a0}′ then a0 ∈ {a, a#, a0, b, b#, b0}′. Symmetrically, b0 ∈ {b, b#, b0, a, a#, a0}′.

[(7) ⇒ (8)] Let c ∈ C, and c1...cn be a word representative of c in the free semigroup

generated by the four elements {a, a#, b, b#}, c = c1...cn. Pose c′ = c#n ...c
#
1 . As

(∀1 ≤ k ≤ n) c#k ck = ckc
#
k ∈ {a0, b0} ⊆ {a, a#, a0, b, b#, b0}′, then

(
c#n ...c

#
1

)
(c1...cn) =

(
c#n ...c

#
2

)
(c#1 c1) (c2...cn) =

(
c#1 c1

)(
c#n ...c

#
2

)
(c2...cn)

=
(
c#1 c1

)
...
(
c#n cn

)
by induction

=
(
c#n cn

)
...
(
c#1 c1

)
by commutation

and by symmetry

(c1...cn)
(
c#n ...c

#
1

)
=
(
cnc

#
n

)
...
(
c1c

#
1

)
=
(
c#n cn

)
...
(
c#1 c1

)
Finally c′c = c′c and cc′ ∈ C ′. It follows that

(
c#n ...c

#
1

)
(c1...cn)

(
c#n ...c

#
1

)
=

(
c#1 c1

)
...
(
c#n cn

) (
c#n ...c

#
1

)
=

(
c#1 c1

)
...
(
c#n−1cn−1

)
c#n

(
c#n−1...(c1)#

)
= c#n

(
c#1 c1

)
...
(
c#n−1cn−1

)(
c#n−1...c

#
1

)
=

(
c#n ...c

#
1

)
by induction

that is c′cc′ = c′. By the same arguments,

(c1...cn)
(
c#n ...c

#
1

)
(c1...cn) = (c1...cn)

and c′ is the group inverse of c, c′ = c#. As cc′ ∈ C ′, then cc# ∈ C ′. Finally, let e ∈ C

be an idempotent. Then e# = e and e = ee# ∈ C ′ by the previous arguments, and

idempotents of C are central. As C is (completely) regular with central idempotents,

it is a Clifford semigroup ([19], Proposition 4.2.1).



[(8) ⇒ (3)] Assume C is a Clifford semigroup. As a0, b0 are idempotents in C then

a0, b0 ∈ C ′ and ab = a0abb0 = b0aba0 = (bb#)ab(a#a) by commutation. It follows

that ab ∈ bS1a. Symmetrically ba ∈ aS1b, and (3) is satisfied.

Example 2.5. Let V be a vector space and S = L(V ) be the semigroup of all linear maps

α : V → V , acting on the left (α : x 7→ xα). Then (∀α, β ∈ S) α ≤R β ⇔ N(β) ⊆ N(α)

and α ≤L β ⇔ R(α) ⊆ R(β), where N denotes the nullspace and R the range of a linear

map. Also, Hα is a group if and only if N(α) ∩R(α) = {0} (see exercice 19 p.63 in [19]).

Let α, β ∈ S be group elements. Then the two-sided reverse order law “αβ and βα are group

invertible with (αβ)# = β#α#, (βα)# = α#β#” holds if and only if one of the following

equivalent statements is satisfied:

1. N(αβ) = N(βα) and R(αβ) = R(βα);

2. N(β) ⊆ N(αβ), R(αβ) ⊆ R(α), N(α) ⊆ N(βα) and R(βα) ⊆ R(β);

3. παβ = βπα, πβα = απβ , where πα (resp. πβ) is the projection on R(α) parallel to

N(α) (resp. on R(β) parallel to N(β)).

These conditions may be interpreted in terms of invariant subspaces: R(α), N(α) are invari-

ant subspaces of β and R(β), N(β) are invariant subspaces of α. Also, as R(α)⊕N(α) = V

for group elements, β and α admit a diagonal block decomposition in both V = R(α)⊕N(α)

and V = R(β)⊕N(β).

Example 2.6. Let S be a semigroup, and a, b ∈ S be group elements such that abHba.

Then by Theorem 2.4, the subsemigroup C of S generated by {a, a#, b, b#} is a Clifford

semigroup and (for instance) (∀n > 0) (aban)
#

=
(
a#
)n (

b#a#
)
.

Finally, we deduce from the “local” theorem the following “global” theorem:

Theorem 2.7. Let S be semigroup. Then the following statements are equivalent:



1. S is completely regular and (∀a, b ∈ S) (ab)# = b#a#;

2. S is regular and (∀a, b ∈ S) abHba;

3. S is regular and (∀a, b ∈ S) ab ∈ L≤a ∩R≤b;

4. S is a Clifford semigroup.

Proof. [(1) ⇒ (2)] As S is completely regular, it is regular and we conclude by Lemma

2.3.

[(2) ⇒ (3)] First, we prove that S is completely regular. Let a ∈ S. As S is regular

exists a′ ∈ S, a = (aa′)a = a(a′a). Then a = aa′aHa′a2Ha2a′ and a ≤H a2. As also

a2 ≤H a by Lemma 1.3, then aHa2 and a is a group element by Theorem 1.4. Finally

S is completely regular and we conclude by the implication (2)⇒ (4) in Theorem 2.4.

[(3) ⇒ (4)] Let a ∈ S. As S is regular exists a′ ∈ S, a = aa′a, a′aa′ = a′. Then

a = (aa′)a = a(a′a) ∈ L≤aa′ ∩ R≤a′a, and it follows that a ≤H a′. Symmetrically,

a′ ≤H a and finally aHa′. By Theorem 1.4, a is completely regular. Let also e ∈ S be

idempotent. Then a and e are completely regular and by the implication (4) ⇒ (6)

in Theorem 2.4, e0 commutes with a. But e# = e = e0 hence e and a commute. It

follows that idempotents are central in S, and as S is regular by assumption, it is a

Clifford semigroup by Proposition 4.2.1 in [19].

[(4)⇒ (1)] Finally, assume that S is a Clifford semigroup. Then S is completely regular

and idempotents are central and we conclude by the implication (6)⇒ (1) in Theorem

2.4.

This theorem requires some comments:



• The equivalence between (1) and (4) can be interpreted in the setting of universal

algebra. It then describes Clifford semigroups as the variety of unary semigroups

(semigroups with a unary operation a → a′, or algebras of type (2, 1) with a semi-

group operation) satisfying four more axioms: x = xx′x (regularity), (x′)′ = x and

(xy)′ = y′x′ (involution), and xx′ = x′x (commutation), that is as regular unary nor-

mal involutive semigroups (the unary operation is regular, and a normal (xx′ = x′x)

involution). Though certainly known, this result appears anywhere in the previous

form to the author knowledge. It can however be easily deduced from the characteri-

zation of inverse semigroups due to Schein [32] as regular unary involutive semigroups

satisfying the additional equation xx′x′x = x′xxx′.

• A semigroup S satisfying (∀a, b ∈ S) abHba is called a H-commutative semigroup. By

Theorem 5.1 of [29], this is equivalent with (∀a, b ∈ S) (∃x, y ∈ S) ab = bxa, ba = ayb.

Theorem 2.7 claims that regular H-commutative semigroups are the same as Clifford

semigroups.

• The equation (∀a, b ∈ S) ab ∈ L≤a ∩ R≤b is equivalent with (∀a ∈ S) aS1 = S1a. As

for regular semigroups aS1 = aS and S1a = Sa then assumption (3) is equivalent

with S regular and normal (centric in [9]) where S is normal if aS = Sa (∀a ∈ S) [33].

Hence Theorem 2.7 claims that regular normal semigroups are the same as Clifford

semigroups. The equivalence between the two notions appears for instance in [34]

Theorem 2 and [22] Theorem 2 as Clifford semigroups are semilattice of groups.

3 One-sided reverse order law

Obvioulsy, Theorem 2.4 answer only partially the question: “Give equivalent conditions

for the one-sided reverse order law”, for they give equivalent conditions for the two-sided

reverse order law, hence only sufficient conditions for the one-sided reverse order law. In



this section, we prove that under either local or global finiteness conditions, the sufficient

conditions of Theorem 2.4 are also necessary.

We start with an example that shows the previous equivalent conditions are not necessary

in general for the one-sided reverse order law.

Example 3.1. Consider the symmetric inverse semigroup of partial one-to-one maps on

the set X = R, S = IR, where maps act on the left: α : x 7→ xα (S is an inverse semigroup

([19], Theorem 5.15)). Let

a :
R+ −→ R+

x 7−→ 2x

and b :

]−∞, 2] −→ ]−∞, 2]

x 7−→



x
2 if 0 ≤ x ≤ 2

1− x if −1 ≤ x < 0

1 + x if x < −1

.

Then a and b are group elements with group inverses

a# :
R+ −→ R+

x 7−→ x
2

and b# :

]−∞, 2] −→ ]−∞, 2]

x 7−→


2x if 0 ≤ x ≤ 1

1− x if 1 ≤ x < 2

x− 1 if x < 0

.

a0 = a#a is the identity map on R+ and b0 = bb# the identity map on ] − ∞, 2]. As

ab = b#a# is the identity map on [0, 1], ab is idempotent hence group invertible with

(ab)# = ab = b#a# and the reverse order law holds. However, ba maps [−1, 2] onto [0, 4],

and is not group invertible. Also, ab and ba are not H-related (but ab ≤H ba as expected),

a0b 6= ba0 and neither of these two elements is group invertible.

Before stating the main theorems, we state a simple lemma that will be useful in the

sequel.



Lemma 3.2. Assume a, b are group invertible and b#a# is a reflexive inverse of ab. Then

a#b# is a reflexive inverse of ba.

Proof. First, we multiply the equation of inner invertibility ab = abb#a#ab on the left by

a# and on the right by b# to get aa#bb# = (aa#bb#)2. From b#a# = b#a#abb#a# we get

by multiplying on the left by b and on the right by a bb#aa# = (bb#aa#)2. It follows that

a0b0 and b0a0 are idempotents. As b0a0 is idempotent then bb#aa#bb#aa# = bb#aa# and

multiplying on the left by b and on the right by a we get baa#b#ba = ba. By symmetry

a#b#baa#b# = a#b#.

Next theorem gives necessary and sufficient conditions for the one-sided reverse order law

for ab, under the additional assumption that ba is group invertible. This may be interpreted

as a “local” finiteness condition on the Drazin index: i(ba) = 1.

Theorem 3.3. Let S be a semigroup and a, b ∈ S be group elements such that ba is group

invertible. Then ab is group invertible with (ab)# = b#a# if and only if abHba.

Proof. Assume ab is group invertible with (ab)# = b#a#. Then (ba)2 is group invertible

with inverse b
(
(ab)#

)3
a (this is “Cline’s formula” [10]) and

(ba)2b
(
(ab)#

)3
a = b(ab)2

(
(ab)#

)3
a = b(ab)#a = bb#a#a = b0a0

is the unit of the subgroupH(ba)2 . As ba is group invertible by assumption, then baH(ba)2Hb0a0

by Theorem 1.4, and (b0a0)(ba) = (ba)(b0a0) = ba. Then

baa#b# = (bb#aa#)baa#b# = bb#a#(abaa#)b# = bb#a#abb#

Multiplying on the left by b# and on the right by b we get

b#baa#b#b = b#(bb#a#abb#)b = b#a#ab = abb#a# = baa#b#



Finally, as ba(a#b#)ba = ba by Lemma 3.2 then ba = baa#b#ba = abb#a#ba and ba ≤R ab.

Symmetrically, a#b#ba = b#a#ab hence ba = baa#b#ba = bab#a#ab and ba ≤L ab. Finally,

ba ≤H ab and as ab ≤H ba by Lemma 2.3, abHba. The converse is Theorem 2.4.

Corollary 3.4. Let S be a semigroup and a, b ∈ S be group elements such that ab and ba

are group invertible. Then (ab)# = b#a# if and only if (ba)# = a#b# if and only if one of

the equivalent conditions of Theorem 2.4 holds.

Example 3.5. Let S be a completely regular semigroup. Then (ab)# = b#a# if and only

if abHba.

Example 3.6. Let R be a reduced ring (with no nilpotent elements). Then (ab)# = b#a#

if and only if abHba. Indeed, by Cline’s formula, (ba)2 is group invertible hence ba is Drazin

invertible. But by Theorem 5 in [13], the Drazin index is exactly 1 for Drazin invertible

elements in a reduced ring. It follows that ba is group invertible, and we apply Theorem

3.3.

This example suggests the use of some “global” finiteness conditions. We start with

minimal conditions on principal ideals in a semigroup (see e.g. [9]).

Definition 3.7. We say that a semigroup S satisfies the minimal condition on principal left

(resp. right, resp. two-sided) ideals if every set of principal left (resp. right, resp. two-sided)

ideals of S contains a minimal member with respect to inclusion, and denote this condition

by ML (resp. MR, resp. MJ). A semigroup satisfies condition M∗L (resp. M∗R) if any

J-class of S satisfies ML (resp. MR).

Equivalently, a semigroup S satisfies ML if and only if it satifies the descending chain

condition on principal left ideals (left DCCP), that is every strictly descending chain of

principal left ideals of S breaks off after a finite number of terms. As remarked by Green

[16], this is weaker than the minimal condition on all left ideals of S, principal and otherwise,



and ML,MR and MJ are independant in general. The definition of M∗L is due to Munn

[28]. It interesting to note that this condition is equivalent with the notion of left stability

of Wallace and Koch [21] for the monoid S1, where a monoid M is left stable if a, b ∈ M

and Ma ⊆ Mab imply that Ma = Mab. Next lemma (that generalizes Theorem 8 in [16]

for ML) is fundamental.

Lemma 3.8 (Lemma 6.41 in [9]). Let S be a semigroup. Then M∗L ⇔≤L ∩J = L.

Example 3.9. Any finite semigroup satisfies the minimal conditions on principal left and

right ideals.

Theorem 3.10. Let S be a semigroup satisfying M∗L and a, b ∈ S be group elements. Then

ab is group invertible with (ab)# = b#a# if and only if abHba.

Proof. Assume ab is group invertible with (ab)# = b#a#. Then ab ≤H ba by Lemma

2.3. In view of Lemma 3.8, we first prove that ab and ba are J -related to get abLba. As

ab = (ab)2(ab)# = a(ba)b(ab)# then ab ≤J ba. As ba = b2b#a#a2 = b2(ab)#(ab)(ab)#a2

then ba ≤J ab. Finally, abJ ba and by Lemma 3.8, abLba. Now, as ab ≤H ba and baLab

then ab ≤R b and ba ≤L b and by Lemma 2.1 abb#a# = b#baa#.

Second, we remark that (b#, a#) satisfies the same hypothesis as (a, b). The same arguments

as before then give b#a# ≤H a#b#, a#b#Lb#a# and b#a#ab = aa#b#b.

Third, by Lemma 3.2 a#b# is a reflexive inverse of ba. Then

ba = baa#b#ba = b(aa#b#b)a

= b(b#a#ab)a = (b#ba#a)ba

= (abb#a#)ba = ab(b#a#ba)

and ba ≤R ab. Finally, baHab.

The converse is Theorem 2.4.



Corollary 3.11. Let S be a semigroup satisfyingM∗L and a, b ∈ S be group elements. Then

ab is group invertible with (ab)# = b#a# if and only if one of the equivalent conditions of

Theorem 2.4 holds.

Example 3.12. Consider the setting of example 2.5, with V finite dimensional. Then the

semigroup S = L(V ) of endomorphisms satisfies ML, and the one-sided reverse-order law

for the group inverse (αβ)# = β#α# holds for two group elements α and β if and only if

R(α), N(α) are invariant subspaces of β, and R(β), N(β) are invariant subspaces of α.

Example 3.13. Let S be a right simple semigroup (aS = S(∀a ∈ S)). Then it consists

on a single R-class (and a single J-class) and satisfies trivially M∗R. By Theorem 3.10 the

one-sided reverse order law holds for any two group invertible elements a, b if and only if

abHba.

Obviously, the previous theorem can be applied to the ring case (even to non-unital

rings). A ring R that satisfies the minimal condition for left principal ideals (left DCCP) is

also known as a right perfect ring after a theorem of Bass ([1], Theorem P) who identified

the two notions (where right perfect rings as defined as rings R where every left R-module

has a projective cover). This is not true for semigroups, for right perfect semigroups (as

studied by Isbell [20] and Fountain [15]) automatically satisfy ML, but the converse is

not true. Theorem 3.10 then claims that in a right perfect ring R, the reverse order law

(ab)# = b#a# holds for group elements a, b in R if and only if abHba. However, we will

show that we can improve the theorem as follows. It is known that a right perfect ring R is

Dedekind finite ([23], Proposition 6.60). Next theorem studies the reverse order law under

the additional hypothesis that the ring is Dedekind-finite.

Recall that a ring R (with unit 1) is a Dedekind-finite ring if ab = 1 is sufficient for

ba = 1. This is equivalent to saying invertible lower triangular matrices are exactly the

matrices whose diagonal elements are invertible elements of the ring (ring “units”), and in



this case the matrix inverse is again lower triangular. In particular, R is Dedekind-finite if

and only if the ring Ln(R) (resp. Un(R)) of lower (upper) triangular matrices is Dedekind-

finite (Proposition 3 in [18]).

Lemma 3.14 ([30], Proposition 4.2). If R is Dedekind-finite and the lower (upper) trian-

gular matrice A is group invertible in Mn(R), then A# is lower (upper) triangular.

Example 3.15. A notion close to regularity is that of unit regularity. A element a of a

ring R is unit regular if a ∈ aR−1a, where R−1 is the set of “units” (invertible elements) of

R. Unit regular rings are Dedekind-finite. Indeed, let a, b ∈ R such that ab = 1 in a unit

regular ring R. Then exists a unit u ∈ R−1, aua = a. As auab = au = ab = 1, then a = u−1

is invertible. Also u = uab = b and ba = uu−1 = 1.

Theorem 3.16. Let R be a Dedekind finite ring and a, b ∈ R such that a, b and ab are

group invertible with (ab)# = b#a#. Then ba is group invertible with (ba)# = a#b#.

Proof. We use the following decomposition :

R = a0Ra0 ⊕ a0R(1− a0)⊕ (1− a0)Ra0 ⊕ (1− a0)R(1− a0)

with a0 = aa#, and express the products in matrix form. The map x ∈ R 7−→ X =x1 x3

x2 x4

 ∈ M2(R) with x1 = a0xa0, x2 = (1 − a0)xa0, x3 = a0x(1 − a0) and x4 =

(1 − a0)x(1 − a0). Let c = b# is then a ring homomorphism. Then we get A =

a 0

0 0

,

B =

b1 b3

b2 b4

 and C =

c1 c3

c2 c4

, with b3 = a0b(1 − a0) = aa#b − aa#baa# and c2 =

(1 − a0)b#a0 = b#aa# − aa#b#aa#. But by lemma 2.3, ab ≤H ba and by cancellation,

as baa#a = ba then aba#a = ab and b3 = 0, and by symmetry, aa#b#a# = b#a# and

c2 = 0. Remark that c is the group inverse of b implies that C is the group inverse of



B in M2(R). Now with use the Dedekind-finiteness of R. Since the matrix C is upper

triangular, so is its group inverse B and b2 = (1 − aa#)baa# = 0. But abaa# = ab hence

baa# = aa#b. Also, since the matrix B is lower triangular, so is its group inverse C and

c3 = aa#b#(1 − aa#) = 0. But aa#b#a# = b#a# hence aa#b# = b#a#a. Interchanging

the role of (a, b) with (b#, a#) then gives bb#a = abb# and condion 5) of Theorem 2.4 is

satisfied, and in particular (ba)# = a#b#.

Corollary 3.17. Let R be a Dedekind finite ring and a, b ∈ R be group elements. Then

ab is group invertible with (ab)# = b#a# if and only if one of the equivalent conditions of

Theorem 2.4 holds.

Example 3.18. Let (R, .,+) be a Dedekind-finite ring, and define S = (R, ◦) the circle

semigroup of R, with (Jacobson) product a ◦ b = a + b − ab (∀a, b ∈ R) (this semigroup

appears notably in relation with radicals, see [7], [8]). Then φ : (R, ◦)→ R, .) that maps x

to 1 − x is a semigroup isomorphism. In particular, a is group invertible in S with group

inverse a[ if and only if (1− a) is group invertible in R, and in this case a[ = 1− (1− a)#.

Also a, b, a ◦ b are group elements of (R, ◦) with (a ◦ b)[ = b[ ◦a[ if and only if (1−a), (1− b)

and (1 − a)(1 − b) = (1 − a ◦ b) are group elements of R and (1 − a ◦ b) = (1 − a)(1 − b)

is group invertible in R with group inverse (1 − b)#(1 − a)#, that is the reverse-order law

holds for (1−a)(1−b) in R. As R is Dedekind-finite this implies that (1−a◦b)HR(1−b◦a)

by Corollary 3.17, and the reverse-order law holds for (1− b)(1− a). This in turns implies

that b ◦ a is group invertible with (b ◦ a)[ = a[ ◦ b[. Finally,

(a ◦ b)[ = b[ ◦ a[ ⇔ (1− a ◦ b)HR(1− b ◦ a)⇔ a ◦ bHSb ◦ a⇔ (b ◦ a)[ = a[ ◦ b[.

Finally, next example show that in non-Dedekind finite rings, it may happen that a, b, ab

are group invertible with (ab)# = b#a# but ba is not group invertible.

Example 3.19. Let R be a non-Dedekind finite ring, and let u, v ∈ R such that uv = 1 6=



vu. Then (vu)2 = vu. Pose w = 1−vu. Then uw = wv = 0. The ring of 3×3 matrices over

RM3(R) is obviously not Dedekind finite. Consider the two following matrices of M3(R)

a =


u 0 0

w v 0

0 0 0

 and b =


0 0 0

0 u 0

0 w v

 .

Then a and b are group elements with

a# =


v w 0

0 u 0

0 0 0

 , b# =


0 0 0

0 v w

0 0 u

 , a0 =


1 0 0

0 1 0

0 0 0

 and b0 =


0 0 0

0 1 0

0 0 1

 .

Also

ab =


0 0 0

0 vu 0

0 0 0

 = b#a#, ba =


0 0 0

0 1 0

w 0 0

 and a#b# =


0 0 w

0 1 0

0 0 0

 .

It follows that ab = b#a# is idempotent and the reverse order law holds for ab, (ab)# =

b#a#. However ba(a#b#) 6= (a#b#)ba and the reverse order law does not hold for ba. In

particular, ba is not group invertible by corollary 3.4.

4 Comments

• Let M be a monoid satisfying M∗L and assume ab = 1. As M is left stable and Ma ⊆

M = Mab then Ma = M . It follows that a is also left invertible and b = a−1, ba = 1.

The monoid is (in some sense) ”Dedekind-finite”. However this condition is not sufficient

for the conclusion of Theorem 3.16 to hold in general for semigroups. Indeed, consider the

monoid M defined as the union of the symmetric inverse semigroup and a single element 1

acting as unit, M = IR ∪ {1}. Then ab = 1 implies ba = 1 for the only solution to ab = 1

is a = b = 1, but example 3.1 shows that the one-sided reverse order law is not equivalent

with the two-sided one.



• In [3] it was proved using Core-Nilpotent Decomposition of complex matrices that: If

A,B ∈ Mn(C) are group invertible and AB = A2 = BA then AB is group invertible with

(AB)# = B#A# = A#B#. Theorem 2.4 proves that the additional hypothesis AB = A2 =

BA is very strong since AB = BA is sufficient, and the result holds not only for the ring of

complex matrices but for arbitrary semigroups.

• As the ring of matrices over a Bezout domain is Dedekind finite then Corollary 3.17

generalizes Theorem 3.7 and Corollaries 3.8 and 3.9 in [6]. Indeed, any matrix A over a

Bezout domain admits a representation A = PDQ, with D = (δi,j) diagonal with either

units (invertible elements) on the diagonal or 0. Pose A′ = Q−1D′P−1 with D’ diagonal

and δ′i,i = δ−1i,i if δi,j is invertible, otherwise δ′i,i = 1. Then A′ is a unit and AA′A = A, hence

A is unit regular. As a unit regular ring is Dedekind-finite (Example 3.15), the conclusion

follows.

• Theorem 3.16 raises an interesting question: is there an other characterization of the

class of rings (or more generally semigroups) where the one-sided reverse order law imply

the two-sided reverse order law ? The results of the paper claim that such a class contains

Dedekind-finite rings and (left or right) stable semigroups. Also, Corollary 3.4 suggests the

introduction of a new “group finitenness condition”: GF = {a, b and ab group invertible

imply ba group invertible}. For semigroups with GF , the one-sided reverse order law implies

the two-sided reverse order law.

• Finally, in [12], Theorem 4.8, it is claimed that, in the context of algebra of operators on

a Banach space, the strong commutativity condition aa#bb# = bb#aa# cannot be avoided

if one wants to get the reverse order rule for the group inverse. From the previous results,

we get that this is true in Dedekind-finite rings, and moreover a0 = aa# and b0 = bb#

are central in C, the semigroup generated by {a, a#, b, b#}. However, this commutativity

condition a0b0 = b0a0 is not necessary in general for semigroups, as a slight variation of

example 3.1 shows (in example 3.1, the semigroup is inverse hence idempotents always



commute).

Example 4.1. Consider the full transformation semigroup on the set X = R, S = TR,

where maps act on the left: α : x 7→ xα. Let

a :

R −→ R

x 7−→


2x if x ≥ 0

8 if x = −1

0 otherwise

and b :

R −→ R

x 7−→



0 if x > 2

x
2 if 0 ≤ x ≤ 2

1− x if −1 ≤ x < 0

1 + x if x < −1

.

a and b are group elements with group inverses

a# :

R −→ R

x 7−→



x
2 if x ≥ 0

2 if x = −1

0 otherwise

and b# :

R −→ R

x 7−→



0 if x > 2

1− x if 1 < x ≤ 2

2x if 0 ≤ x ≤ 1

x− 1 if x < 0

.

Then

ab :

R −→ R

x 7−→


x if 0 ≤ x ≤ 1

0 otherwise

and b#a# :

R −→ R

x 7−→


x if 0 ≤ x ≤ 1

0 otherwise

.

As ab = b#a# is idempotent it is group invertible with (ab)# = ab = b#a#, and the reverse

order law holds for ab. However, (−1)a#abb# = 0 whereas (−1)bb#a#a = 4 (in particular,

ba is not group invertible by Corollary 3.4).
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