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Abstract

We study generalized inverses on semigroups by means of Green’s relations. We
first define the notion of inverse along an element and study its properties. Then
we show that the classical generalized inverses (group inverse, Drazin inverse and
Moore-Penrose inverse) belong to this class.
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There exist many specific generalized inverses in the literature, such as the
group inverse ([3], [4], [5]), the Drazin inverse ([2], [1], [6]) or the Moore-Penrose
inverse ([1], [6]). Necessary and sufficient conditions for the existence of such
inverses are known ([3], [2], [4], [5], [7], [8], [14], [10]), as are their properties.
If one looks carefully at these results, it appears that these existence criteria
all involve Green’s relations [3], and that all inverses have double commuting
properties. So one may wonder whether we could unify these different notions
of invertibility.

In this article we propose to define a new type of generalized inverse, the
inverse along an element that is based on Green’s relation’s L, R and H [3]
and the associated preoders. It appears that this notion encompass the classical
generalized inverses but is of richer type. By deriving general existence criteria
and properties of this inverse, we will then recover directly the classical results.
The framework is the one of semigroups, hence the results are directly applica-
ble in rings or algebras where generalized inverses are highly studied ([4], [5],
[6], [14], [9]).

This article is organized as follows: in the first section, we review the prin-
cipal definitions and theorems we will use regarding generalized inverses and
Green’s relations. In the second section we define our new generalized inverse,
the inverse along an element, and derive its properties. In the third section
we finally show that the classical generalized inverses belong to this class, and
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retrieve their properties.

1. Preliminaries

As usual, for a semigroup S, S1 denotes the monoid generated by S. We first
review some results on Green’s relations, and then discuss the various notions
of generalized inverses.

Green’s relations

For elements a and b of S, Green’s relations L, R and H are defined by

1. aLb ⇐⇒ S1a = S1b;

2. aRb ⇐⇒ aS1 = bS1;

3. aHb ⇐⇒ aLb and aRb.

That is, a and b are L-related (R-related) if they generate the same left (right)
principal ideal, and H = L ∩ R. We remark that the use of the monoid S1

instead of S allows us to rewrite relations L and R by the following equations:

aLb ⇐⇒ ∃x, y ∈ S1, xa = b and a = yb, (1)

aRb ⇐⇒ ∃x, y ∈ S1, ax = b and a = by. (2)

These are equivalence relations on S, and we denote the L-class (R-class, H-
class) of a by La (Ra,Ha). The L (R) relation is right (left) compatible, that
is for any c ∈ S1, aLb⇒ acLbc (aRb⇒ caRcb).

Parallel with these equivalence relations we have the preorder relations:

1. a ≤L b ⇐⇒ S1a ⊂ S1b;

2. a ≤R b ⇐⇒ aS1 ⊂ bS1;

3. a ≤H b ⇐⇒ a ≤L b and a ≤R b.

These equivalence relations and preorders imply the following cancellation
properties that we will frequentely use in the sequel:

a ≤L b⇒ {∀x, y ∈ S1, bx = by ⇒ ax = ay}, (3)

a ≤R b⇒ {∀x, y ∈ S1, xb = yb⇒ xa = ya}. (4)

Finally we will also need the notion of the trace product ([11], [13]): for
a, b ∈ S, we say that ab is a trace product if ab ∈ Ra ∩ Lb.

Generalized inverses

Basically, a generalized inverse is an element that shares some (but not all)
of the properties of the reciprocal inverse in a group. We review here the clas-
sical notions.
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Let a ∈ S. The element a in S is called (Von Neumann) regular if a ∈ aAa,
that is there exists b such that aba = a. In this case b is known as an inner
inverse of a. If there exists b ∈ S, bab = b then b is called an outer inverse (or
weak inverse) of a. An element b that is both an inner and an outer inverse
is usually simply called an inverse of a. If it satisfies only one of the two con-
ditions, it is called a generalized inverse. The three most common generalized
inverses (group inverse, Drazin inverse and Moore-Penrose inverse) are defined
by imposing additional properties.

If b is an inverse (inner and outer) of a that commutes with a then b is a
called a group inverse (or commuting inverse) of a. Such an inverse is unique
and usually denoted by a]. Its name “group inverse” comes from the following
result.

Corollary 1 (Corollary 4 p. 275 in [11]). If a and a′ are mutually inverse
elements of S then aa′ = a′a if and only if a and a′ belong to the same H-class
H. If this be the case, H is a group, and a and a′ are inverses therein in the
sense of group theory, i.e., aa′ = a′a = e, where e is the identity element of H.

This corollary itself comes from the following theorem of Green.

Theorem 2 (Theorem 7 p. 169 in [3]).

1. If a H-class contains an idempotent e, then it is a group with e as the
identity element.

2. If for any a, b ∈ S, a, b and ab belong to the same H-class H, then H is
a group.

To study non-regular elements, Drazin [2] introduced another commuting
generalized inverse, which is not inner in general. An element a ∈ S is Drazin
invertible if there exists b ∈ S and m ∈ N∗ such that

1. ab = ba;

2. am = am+1b;

3. b = b2a.

A Drazin inverse of a is unique if it exists and will be denoted by aD in the sequel.

Finally, when S is a endowed with an involution ∗ that makes it an involutive
semigroup (or ∗-semigroup), i.e. the involution verifies (a∗)∗ = a and (ab)∗ =
b∗a∗, Moore [12] and Penrose [15] studied inverses b of a with the additional
property that (ab)∗ = ab and (ba)∗ = ba. Once again this inverse, if it exists, is
unique. It is usually called the Moore-Penrose inverse (or pseudo-inverse) of a
and will be denoted by a+.
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2. A new generalized inverse: the inverse along an element

We start with a simple lemma that will give us alternative characterizations
of our new generalized inverse.

Lemma 3. Let a, b, d ∈ S. Then the two following statements are equivalent:

1. bad = d = dab and b ≤H d.
2. bab = b and bHd.

Proof.
[1. ⇒ 2.] Suppose bad = d = dab and b ≤H d. Then b ≤L d and by left
cancellation (equation 3) bab = b and b is an outer inverse of a. But bad = d =
dab implies that d ≤H b and finally bHd.
[2.⇒ 1.] Naturally bHd implies b ≤H d. But it also implies d ≤H b and by left
and right cancellation (equations 3 and 4), bab = b implies bad = d = dab. This
ends the proof.

Definition 4. Let a, d ∈ S. We say that b ∈ S is an inverse of a along d
if it verifies one of the two equivalent statements of lemma 3. If moreover the
inverse b of a along d verifies aba = a, we say that b is an inner inverse of a
along d.

We note that ba and ab are then idempotents in the R and L-class of d respec-
tively.

Example 5. Let S = T3 be the full transformation semigroup, which consists
of all functions from the set {1, 2, 3} to itself with multiplication the composi-
tion of functions. We write (abc) for the function which sends 1 to a, 2 to b,
and 3 to c.
The egg-box diagram form T3 is as follows (R-classes are rows, L-classes columns
and H-classes are squares; bold elements are idempotents).

(1 1 1) (2 2 2) (3 3 3)
(1 2 2), (1 3 3), (2 3 3),
(2 1 1) (3 1 1) (3 2 2)
(2 1 2), (3 1 3), (3 2 3),
(1 2 1) (1 3 1) (2 3 2)
(2 2 1), (3 3 1), (3 3 2),
(1 1 2) (1 1 3) (2 2 3)

(1 2 3), (2 3 1),
(3 1 2), (1 3 2),
(3 2 1), (2 1 3)

For instance,

R(232) = {(212, (121), (313), (131), (323), (232)},
L(232) = {(233), (322), (323), (232), (332), (223)},
H(232) = {(323), (232)}.
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Direct computations give that

� a = (221) is inner invertible along d = (232) with inverse b = (323).

� a′ = (123) is invertible along d = (232) with inverse b = (323) but not
inner invertible along d (whereas, being idempotent, it is regular).

� a′′ = (111) is not invertible along (232).

Of fundamental importance is the uniqueness of our new generalized inverse:

Theorem 6. If an inverse along d exists, it is unique.

Proof. Let b and b′ be two inverses of a along d. Then bad = d and b′ ≤H d
implies (by right cancellation, equation 4) bab′ = b′. But dually, d = dab′ and
b ≤H d implies (by left cancellation, equation 3) b = bab′, and finally b = b′.

The uniqueness of the inverse along an element allows us to introduce the
following notation (on a suggestion of R. E. Hartwig): if a is invertible along d,
we denote by a‖d the inverse of a along d.

Now we prove an interesting characterization of the inverse of a along d in
terms of the group inverses (ad)] and (da)], as well as existence criteria.

Theorem 7. Let a, d ∈ S. The three following statements are equivalent:

1. a is invertible along d.

2. adLd and Had is a group.

3. daRd and Hda is a group.

In this case
a‖d = d(ad)] = (da)]d. (5)

Proof.
[1.⇒ 2.] Suppose a is invertible along d with inverse b. Then bLd implies (right
compatibility) that badLdad and equality bad = d then implies dLdad. But
bad = d also implies adLd and still by right compatibility, adadLdad. Finally
(ad)2LdadLdLad.
On the other hand, bRd implies adabRadad, and then equality dab = d implies
adR(ad)2. Finally (ad)2Had and by theorem 2, Had is a group.

[2.⇒ 3.] Suppose now adLd and Had is a group, and let (equation 1) x ∈ S1

such that d = xad. From ad = ad(ad)]ad = adad(ad)] = (ad)]adad we get
d = xad = xadad(ad)] = dad(ad)] and daRd. To prove that Hda is a group, by
theorem 2 we only need to prove that daH(da)2. But

da = xada = xadad(ad)]a = xadad(ad)]ad(ad)]a

= dadad(ad)](ad)]a
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and daR(da)2. But since d = dad(ad)] we have also

da = dad(ad)]a = d(ad)]adad(ad)]a

= d(ad)](ad)]adada

and daL(da)2. Finally daH(da)2.
[3. ⇒ 1.] Suppose now daRd and Hda is a group. Pose b = (da)]d and let

(equation 2) x ∈ S1 such that d = dax. Then bada = (da)]dada = da implies
by right cancellation bad = d, and dab = da(da)]d = da(da)]dax = dax = d.
But also b = (da)]d = (da)]dax = da(da)]x and b ≤H d. Finally b = (da)]d is
the inverse of a along d.

Example 8. Let S be the subsemigroup of M3(N) generated by the matrices

a =

 1 0 0
0 1 0
0 0 0

 b =

 0 1 1
1 0 0
0 0 0

 c =

 0 1 0
1 0 0
0 0 0

 d =

 1 0 0
0 1 1
0 0 0


Then aRbRcRd (the semigroup is right simple), aLc and bLd. There are only
two H-classes Ha = {a, c} and Hd = {b, d}. In this case the egg-box diagram
is very simple:

a, c b,d

Since a and d are idempotents, each H-class contains an idempotent element
and hence it is a group. From theorem 7, any element is invertible along another
one. Moreover, we can use equation 5 to compute the generalized inverses. For
instance, the inverse of b along c is

b‖c = c(bc)] = ca] = ca = c.

We also deduce from the previous theorem the following simple criterion for
inner invertibility along d.

Corollary 9. Let a, d ∈ S. Then a is inner invertible along d if and only if
ad and da are trace products.

Proof.
[⇒] Let b = a‖d = d(ad)] = (da)]d be the inner inverse of a along d. Then by
theorem 7 adLd and daRd. But by inner invertibility, aba = a hence ad(ad)]a =
a = a(da)]da and adRa and daLa. Finally, ad ∈ Ra ∩ Ld and da ∈ Rd ∩ La,
which is the definition of trace products.
[⇐] Suppose now ad and da are trace products. Then ad ∈ Ra ∩ Ld and
da ∈ Rd∩La. By right compatibility, adLd implies adaLda. But daLa and once
again by right compatibility, adadLad. On the other hand, by left compatibilty,
adRa implies dadRda. But daRd and once again by left compatibility, adadRad.
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By theorem 2, Had is a group and also adLd, and by theorem 7, a is invertible
along d. Let b = a‖d. Then it satisfies bad = d hence abad = ad and by right
cancellation using adRa we get aba = a and the inverse is inner.

We finally prove an interesting result regarding commutativity. If A is a
subset of the semigroup S, A′ denotes as usual the commutant of A and A′′ its
bicommutant.

Theorem 10. Let a, d ∈ S. If a is invertible along d, then a‖d ∈ {a, d}′′.

Proof. Let b be the inverse of a along d. It then satisfies bad = d = dab and
b ≤H d. Suppose c ∈ {a, d}′. Then

cd = cbad = cdab = dacb

= dc = dabc = badc = bcad

hence cd = cbad = bcad, dc = dabc = dacb. Then by left and right cancellation
(equations 3 and 4, b ≤H d)

cb = cbab = bcab

= bacb = babc = bc

and b ∈ {a, d}′′.

We remark that if da = ad, the two previous results then give that b = a‖d

commutes with a and d and that Hd = Had is a group.

3. Inverses along d and classical inverses

Our interest in the notion of the inverse along an element is in particular
based on the fact that the classical generalized inverses belong to this class.

Theorem 11. Let a ∈ S. (S is a ∗-semigroup in 3.)

1. a is group invertible if and only if it is invertible along a. In this case the
inverse along a is inner and coincides with the group inverse.

2. a is Drazin invertible if and only if it is invertible along some am, m ∈ N,
and in this case the two inverses coincide.

3. a is Moore-Penrose invertible if and only if it is invertible along a∗. In this
case the inverse along a∗ is inner and coincides with the Moore-Penrose
inverse.

In other words:

a] = a‖a, (6)

aD = a‖a
m

for some integer m, (7)

a+ = a‖a
∗
. (8)
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Proof.

1. Suppose a is group invertible. Then by corollary 1 Ha is a group that
contains the group inverse a]. Hence a]aa] = a] and a]Ha, and a is
invertible along a, with inverse a‖a = a].
Conversely, if a‖a exists, then it satisfies by definition a‖aaa = a and
a‖aaa‖a = a. But by theorem 10 it commutes with a and then satisfies
also aa‖aa = a. Hence it is the group inverse.

2. Suppose a Drazin invertible, with Drazin inverse aD. Then by definition
aDaaD = aD and there exists m ∈ N∗, aDam+1 = am = am+1aD. Posing
d = am, we get aDad = d = daaD and from aDa = aaD, am(aD)maD =
(aDa)maD = aD = aD(aaD)m = aD(aD)mam. This proves that aD ≤H d
and finally aD = a‖a

m

.
Conversely, suppose there exists m ∈ N∗ such that a invertible along
am. Then a‖a

m

is an outer inverse of a that satisfies a‖a
m

aam = am =
amaa‖a

m

. But by theorem 10 it also commutes with a, hence it is the
Drazin inverse.

3. Suppose a Moore-Penrose invertible with Moore-Penrose inverse a+. Then

a+ = (a+a)a+ =
(
a+a

)∗
a+ = a∗

(
a+
)∗

a+

a+ = a+
(
aa+

)
= a+

(
aa+

)∗
= a+

(
a+
)∗

a∗

and a+ ≤H a∗. But also

a∗ =
(
aa+a

)∗
=
(
a+a

)∗
a∗ = a+aa∗

a∗ =
(
aa+a

)∗
= a∗

(
aa+

)∗
= a∗aa+

and a+aa∗ = a∗ = a∗aa+. Finally a is inner invertible along a∗ with
a‖a

∗
= a+.

Conversely, suppose a is invertible along a∗. Then a‖a
∗

is an outer inverse
of a that satisfies

a‖a
∗
aa∗ = a∗ = a∗aa‖a

∗

and by involution
a(a‖a

∗
a)∗ = a = (aa‖a

∗
)∗a.

It follows that a‖a
∗
a = (a‖a

∗
a)(a‖a

∗
a)∗ and aa‖a

∗
= (aa‖a

∗
)∗(aa‖a

∗
) are

hermitian, and aa‖a
∗
a = a(a‖a

∗
a)∗ = a. Finally a‖a

∗
is the Moore-Penrose

inverse of a.

Combining theorem 7 and theorem 11, we then get directly the following
existence criteria and commuting relations for the classical inverses [3], [2], [4],
[5], [7], [8], [14], [10].

Corollary 12. Let a ∈ S.

1. A group inverse a] exists if and only if a2Ha, in which case a] ∈ {a}′′.
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2. A Drazin inverse aD exists if and only if there exists m ∈ N∗, am+1Ham,
in which case aD ∈ {a}′′.

3. A Moore-Penrose inverse a+ exists if and only if aa∗Ra and a∗aLa, in
which case a+ ∈ {a, a∗}′′.

Note that many other results involving classical inverses are then straight-
forward consequences of theorem 11. We give two instances of this, the first one
concerning equal projections (EP-elements).

In [14], we find the following proposition.

Proposition 13 (Proposition 2 p. 162 in [14]). Given a in a ring R with
involution ∗, the following conditions hold:

1. If aR = a∗R then a+ exists with respect to ∗ iff a] exists, in which case
a+ = a].

2. If a+ exists with respect to ∗, a] exists, and a+ = a], then aR = a∗R.

Then the proof easily follows from our characterization of the group inverse
and the Moore-Penrose inverse as inverses along an element:

Proof. By involution, (aR = a∗R) ⇐⇒ (Ra∗ = Ra) ⇐⇒ (aHa∗). Since the
inverse along an element d depends only on the H-class of d, theorem 11 then
gives the desired result.

Actually, we have the following more precise result.

Theorem 14. Let S be a semigroup with involution ∗. Then the following
statements are equivalent:

1. a+ exists, a] exists and a] = a+.

2. aLa∗Laa∗.

3. aHaa∗.

4. aHa∗a.

5. aRa∗Ra∗a.

Proof.
[1. ⇒ 2.] Suppose a+ exists, a] exists and a] = a+. Then by corollary 12
aa∗La∗. But also aLa]La+La∗ and finally aLa∗Laa∗.
[2.⇒ 3.] By involution.
[3. ⇒ 4.] Suppose aHaa∗. Then by transposition a∗Haa∗. It follows that a, a∗

and aa∗ are in the same H-class, and by theorem 2 Haa∗ is a group. Then a∗a
is also in the group Haa∗ and aHa∗Haa∗Ha∗a.
[4.⇒ 5.] By involution.
[5. ⇒ 1.] Suppose aRa∗Ra∗a. Then by transposition a∗LaLa∗a and a, a∗ and
a∗a are in the same H-class. By theorem 2 Ha∗a is a group. But also a∗aRa∗ by
hypothesis and by theorem 7, a is invertible along a∗ or equivalently, a+ exists.
But aHa∗ implies that a‖a = a] also exists and is equal to a‖a

∗
= a+.
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Also, we find in [8] the following theorem.

Theorem 15 (Theorem 5.3 p. 144 in [8]). Let R be a ring with involution
∗. An element a ∈ R is Moore-Penrose invertible if and only if

∀x, y ∈ S1, a∗ax = a∗ay ⇒ ax = ay,

∀x, y ∈ S1, xaa∗ = yaa∗ ⇒ xa = ya,

and a∗a is group invertible.
If this is the case, then also aa∗ is group invertible and

a+ = (a∗a)]a∗ = a∗(aa∗)].

Note the use of the cancellation properties. The only if part is quite strong,
since we have the following result.

Theorem 16. Let S be a semigroup with involution ∗. An element a ∈ S is
Moore-Penrose invertible if and only if

∀x, y ∈ S1, a∗ax = a∗ay ⇒ ax = ay

and a∗a is group invertible.
If this is the case, then also aa∗ is group invertible and

a+ = (a∗a)]a∗ = a∗(aa∗)].

Proof. Suppose a+ exists. Then a is invertible along a∗. By theorem 7, Haa∗

and Ha∗a are groups and

a‖d = (a∗a)]a∗ = a∗(aa∗)].

Also a∗aLa and by left cancellation,

∀x, y ∈ S1, a∗ax = a∗ay ⇒ ax = ay.

Conversely, suppose a∗a is group invertible and

∀x, y ∈ S1, a∗ax = a∗ay ⇒ ax = ay.

Then by group invertibility a∗a = a∗a(a∗a)]a∗a which by cancellation implies
a = a(a∗a)]a∗a. Hence aLa∗a, Ha∗a is a group and by theorem 7, a is invertible
along a∗. But aa∗ is then also group invertible. Finally, a is Moore-Penrose
invertible by theorem 11 and equation 5 reads

a+ = a‖a
∗

= (a∗a)]a∗ = a∗(aa∗)].
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