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Abstract. In this article, we prove that the well-known semigroup property of being E-
solid is actually equivalent to abelianness modulo the Jacobson radical in the case of (possibly
non-unital) non-regular rings. We also give various other characterizations of such rings.

This article is dedicated to André Leroy on his retirement.

1. Introduction

The coexistence of two compatible algebraic structures on a ring, the multiplicative (semi-
group) one and the additive one confers a ring some strong rigidity relative to mere semi-
groups. For instance, it is well-known that strongly regular rings are exactly those rings
where each element admits a unique reflexive inverse (inverse rings), and that they also
coincide with abelian regular rings. By contrast, completely regular semigroups, inverse
semigroups and Clifford semigroups form distinct classes of semigroups. In this note, we
consider neither regular not necessarily unital rings whose multiplicative semigroup is E-
solid, and prove that they are characterized by their idempotents being central modulo the
Jacobson radical. We also provide the reader with various other characterizations of such
rings in terms of the Jacobson radical, reflexive inverses, chains of idempotents or square
stable range one. In particular, we prove that unital E-solid rings coincide with the strongly
IC rings of Khurana, Lam and Wang [10], the J-abelian rings (see [5], [12] and also [11]), the
strongly perspective rings [8], [12], the superspective rings [21] or the 1/2-perspective rings
of the present author [18].

First, we quickly review a few of the basics concepts here. In the sequel, rings will be
associative but not necessarily unital.

An element x of a ring R is said to be regular if there exists some y ∈ R such that xyx = x.
The element y is called an inner inverse (formerly quasi-inverse) of x. When the pair of
equalities xyx = x and yxy = y hold, we say that x and y are reflexive inverses of each
other, or that (x, y) forms a reflexive pair. We denote by V (x) the set of reflexive inverses
of x. It is well known that every regular element has a reflexive inverse (take y′ = yxy).
An element x ∈ R is strongly regular if it admits a commuting inner (equiv. reflexive)

inverse, and unit-regular if it admits an inner inverse that is also a unit. A ring such that
every element is regular (resp. strongly regular, unit-regular) is called a regular ring (resp.
strongly regular ring, unit-regular ring).

An idempotent e ∈ idem(R) is left semicentral if (∀x ∈ R) xe = exe. Two idempotents
e, f ∈ idem(R) are isomorphic (denoted by e ≃ f) if eR and fR are isomorphic submodules
of RR, iff e = xy, f = yx for some x, y ∈ R. Moreover, we can always choose y ∈ V (x).
The idempotents e and f are left (resp. right) associates, and we write e ∼ℓ f (resp. e ∼r f)
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if Re = Rf or equivalently if ef = e and fe = f (resp. eR = fR or equivalently ef = f
and fe = e). Finally, any two idempotents e, f are weakly (resp. strongly) 2-chained if
e ∼r g ∼ℓ f for some g ∈ idem(R) or (resp. and) e ∼ℓ h ∼r f for some h ∈ idem(R).

Since we consider non necessarily unital ring, we recall the characterization of the Jacobson
radical in terms of quasi-regular elements:

J(R) = {s ∈ R|(∀p ∈ R) sp is right quasiregular}

where an element x ∈ R is right quasiregular if x + y − xy = 0 for some y ∈ R. As is
well-known, the elements of J(R) are themselves both left and right quasiregular [13].
The previous purely multiplicative notions also make sense in semigroups. Traditionally,

idempotents of a semigroup S are however denoted by E(S) and strongly regular elements
are termed completely regular. We finally recall Clifford and Miller’s theorem, interpreted in
terms of associated idempotents.

Theorem 1.1 ([20, Theorem 3]). Let S be a semigroup and let e, f ∈ E(S) be isomorphic
idempotents (e = ab, f = ba for some a, b ∈ S with b ∈ V (a)). Then e ∈ Rfe, f ∈ feR iff
e ∼r h ∼ℓ f for some h ∈ E(S) iff a is completely regular.

2. E-solid rings

2.1. Classes of semigroups. Apart groups, the following classes of regular semigroups are
among the most notable ones:

(1) Inverse semigroups (each element admits a unique reflexive inverse; equiv. regular semi-
groups whose idempotents commute);

(2) Completely regular semigroups (each element admits a commuting inner inverse);
(3) Clifford semigroups (each element admits a unique reflexive inverse, that moreover com-

mutes with the element; equiv. regular semigroups with central idempotents);
(4) Orthodox semigroups (regular semigroups whose set of idempotents forms a subsemi-

group);
(5) Locally inverse semigroups (each local submonoid is inverse);
(6) E-solid regular semigroups (the idempotent generated subsemigroup ⟨E(S)⟩ is completely

regular).

Inverse semigroups appear naturally in connections with other areas of mathematics to model
partial symmetries [15], while completely regular semigroups proved one of the most elegant
classes of semigroups, with a well established structure. Moreover, these two classes carry
a natural inversion, and with this inversion they form varieties of unary semigroups. The
other classes form e-varieties of regular semigroups [6], which allows an equational description
(by a generalization of Birkhoff theorem). Inverse semigroups are orthodox, and orthodox
semigroups are E-solid regular.

Regarding non-regular semigroups, we say that:

(1) S is an E-semigroup if E(S) is a subsemigroup;
(2) S is E-commutative if E(S) is commutative;
(3) S is E-solid if for any three idempotents e, f, g ∈ E(S), if e ∼r g ∼ℓ f then there exists

h ∈ E(S) such that e ∼ℓ h ∼r f , and dually if e ∼ℓ g ∼r f then there exists h ∈ E(S)
such that e ∼r h ∼ℓ f . In terms of chains of idempotents, S is E-solid iff any weakly
2-chained idempotents are strongly 2-chained.
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2.2. The ring case. For any ring R = (R,+, .), its multiplicative part (R, .) forms a semi-
group. We say that the ring R = (R,+, .) is inverse (resp. strongly regular, resp. Clifford,
resp. E-solid) if (R, .) is an inverse (resp. completely regular, resp. Clifford, resp. E-solid)
semigroup.

As recalled in the introduction, in the case of regular rings, a remarkable collapsing oc-
curs: strongly regular rings and inverse rings coincide, and are therefore Clifford rings, more
usually called abelian regular rings (regular rings whose idempotents are central). It is also
known that they coincide with orthodox rings [24]. They admit many other characteriza-
tions, among others they are the reduced regular rings, the regular subdirect products of
division rings, or the regular rings such that (∀e, f ∈ idem(R)) ef = 0 ⇒ fe = 0. In 1997, J.
Loyola proved that they also coincide with E-solid regular rings [16]. The proofs therein rest
heavily upon regularity. Actually, a little more is true: such rings can also be characterized
locally (by considering their corner rings eRe, e ∈ idem(R)) as the locally inverse rings or
the locally E-solid regular rings [7, Proposition 3.1].

In case of non-regular rings, the first result was probably the characterization of unital
rings whose regular elements are strongly regular by Khurana, Lam and Wang [10] in terms
of elements of square stable range one (an element a ∈ R has (right) square stable range
one if aR + bR = R (for any b ∈ R) implies that a2 + by is a unit for some y ∈ R). Such
rings are also called strongly IC rings by analogy with rings with internal cancellation (IC
rings [9]) that are characterized by their regular elements being unit-regular. Otherwise, few
results were known in relations with the previous notions until recently and the obtainment
by Khurana, Lam, Nielsen, Patricio and the present author of different results based on
the Jacobson radical [11, Theorem 3.13], [12, Theorem 3.11], [17, Theorems 2.1 and 2.2],
[18, Proposition 4.16 and Corollary 4.17], [19, Theorem 6.3]. Among these results, while a
relation between strongly regular elements and the Jacobson radical was already observed
for instance in [19], it is Khurana and Nielsen [11] that discovered the full strength of the
relation between strongly IC rings and the Jacobson radical, and the link with chains of
idempotents. They notably established equivalences instead of mere implications (many of
these equivalences are recalled below). As such, [11] served as a catalyst for much of the
subsequent research on the subject, including the present article. To try to be thorough
on this topic, let us add two comments. First, rings having idempotents central modulo
their Jacobson radical are called J-abelian in [5] and [12], and we will use this terminology
afterwards. Second, those rings are determined by a very nice property in terms of the
direct summands of the module RR, as proved independently in [11, Theorem 3.17], [12,
Theorem 3.11] or [18, Corollary 4.10]: R is J-abelian iff for any two isomorphic direct sum-
mands A,B of RR, any direct complement of A is a direct complement of B (quoting [11]
“isomorphic direct summands share all their complements”). For this reason, they are also
called strongly perspective rings [8], [12], 1/2-perspective rings [18] or superspective rings [21].

We collect all these known results below (unital ring case). While most of the proofs
carry verbatim to the non-unital ring case, we nevertheless provide the reader with a general
scheme to prove they remain true in the non-unital ring case.

Theorem 2.1 ([10], [11], [12], [17]). Let R be ring, and consider the following statements:

(1) regular elements of R are strongly regular (R is strongly IC);
(2) regular elements of R have (right) square stable range one;
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(3) strong 2-chaining is transitive;
(4) weak 2-chaining is transitive;
(5) isomorphic idempotents are strongly 2-chained;
(6) isomorphic idempotents are weakly 2-chained;
(7) isomorphic idempotents of R are equal modulo the Jacobson radical;
(8) idempotents of R are central modulo the Jacobson radical (R is J-abelian).

Then all these statements are equivalent in case R is unital. Moreover, the equivalences
(without statement (2)) remain valid in non-unital rings.

We propose here to prove the non-unital case by using the classical unitization (Dorroh

extension) of a ring as a general methodology. Indeed, let R be a ring and R̂ = R⊕Z be its
classical Dorroh extension, with product (a, n)(b, p) = (ab+ pa+ nb, np). Then idempotents

of R̂ are of the form e0 = (e, 0) or e1 = (−e, 1) = 1 − e0, where e ∈ idem(R). Moreover,

isomorphic (in particular associate) idempotents in R̂ share the same second coordinate. It

follows that chains of idempotents of R̂ either live in the ideal R of R̂, or so does the chain of
their complementary idempotents (if e1 ∼r f1 then 1− e1 ∼ℓ 1− f1 for any two idempotents
e1, f1 of a unital ring). Then almost each of the equivalences follow from the previously
proved unital results, and this general structural relationship. Below, we derive all but one
equivalence (in the non-unital case) by this method. The remaining one cannot be proven

this way because isomorphic idempotents in R̂ of the form e1 = (−e, 1), f1 = (−f, 1) need
not have e and f isomorphic in R in general. The remaining equivalence will thus be proved
independently in Lemma 2.2. Some equivalences will also be proven directly in Theorem 2.3.

Proof of Theorem 2.1. We prove that (1) ⇐⇒ (3) ⇐⇒ (4) ⇐⇒ (5) ⇐⇒ (6) ⇐⇒
(8) ⇒ (7) in the non-unital case. First, we observe that the following implications are
straightforward even in the non-unital case: (5) ⇒ (3), (5) ⇒ (6) and (6) ⇒ (4). Also
(1) ⇐⇒ (5) by Miller and Clifford’s Theorem 1.1.

Let R̂ = R⊕Z and e ∈ idem(R) be central modulo J(R). As is well-known, J(R̂) = (J(R), 0)

so that for any x ∈ R and n ∈ Z, the commutator [ei; (x, n)] = ((−1)i(ea − ae), 0) ∈ J(R̂)

(i ∈ {0, 1}), and e0, e1 ∈ idem(R̂) are central modulo J(R̂).

Second, if e ∈ idem(R) is associate to f ∈ idem(R̂), then f ∈ R as R is an ideal of R̂. By

the same argument, a ∈ R is strongly regular in R̂ iff it is strongly regular in R.
We conclude that (8) ⇒ (1), (3), (4), (5), (6), (7) in non-unital rings.
We finally prove that (3) ⇒ (8) (the proof of (4) ⇒ (8) is similar). Assume (3) and let

ei, fj, gk ∈ idem(R̂) (i, j, k ∈ {0, 1}) be such that ei, fj and fj, gk are strongly 2-chained

in R̂. Suppose first that i = 0. Then j = k = 0 (associate idempotents in R̂ share the
same second coordinate) and e, f and f, g are strongly 2-chained in R. By the transitivity

assumption, e and g are strongly 2-chained in R hence e0, g0 are strongly 2-chained in R̂.
Suppose now that i = 1. Then j = k = 1 and e1 = 1 − e0, f1 = 1 − f0 and f1 =
1− f0, g1 = 1− g0 are strongly 2-chained, so that their complementary idempotents are also
strongly 2-chained. Thus as previously, e0, g0 are strongly 2-chained in R̂ and so are their
complementary idempotents. □

In passing, we have proved that, if R has central idempotents modulo its Jacobson radical,
then so does its Dorroh extension R̂ = R ⊕ Z. We will return to the Dorroh extension,
unitizations and square stable range 1 at the end of this section.
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The remaining implication (7) ⇒ (5) is the content of Lemma 2.2. As pointed out by Pace
Nielsen, this result is actually a specialization of [2, Proposition 2.4].

Lemma 2.2. Let R be a ring, and e, f ∈ idem(R) be such that e ≡ f (mod J(R)). Then e
and f are strongly 2-chained.

Proof. By duality, we only have to prove that e and f are left 2-chained. So assume that
f = e− j for some j ∈ J(R), and let q ∈ R be such that j + q − jq = 0. Then

ef(f − q) = ef − efq = (e− ej)− (eq − ejq) = e− e(j + q − jq) = e.

This proves that e ∈ efR. By duality f ∈ Ref and we conclude by Miller and Clifford’s
Theorem 1.1. □

Our main theorem proves that E-solid rings are exactly J-abelian rings. Moreover, they
can also be characterized by uniqueness of reflexive inverses modulo the Jacobson radical,
commutation of idempotents modulo the Jacobson radical or by product of idempotents
being idempotents modulo the Jacobson radical.

Theorem 2.3. Let R be a (possibly non-unital) ring. Then the following statements are
equivalent:

(1) reflexive inverses are unique modulo the Jacobson radical;
(2) idempotents of R are central modulo the Jacobson radical (R is J-abelian);
(3) idempotents commute modulo the Jacobson radical;
(4) for all e, f ∈ idem(R), ef ≡ f (mod J(R)) ⇐⇒ fe ≡ f (mod J(R));
(5) weakly 2-chained idempotents are equal modulo the Jacobson radical;
(6) isomorphic idempotents are equal modulo the Jacobson radical;
(7) isomorphic idempotents are strongly 2-chained;
(8) regular elements are strongly regular (R is strongly IC);
(9) products of idempotents are idempotents modulo the Jacobson radical;
(10) R is E-solid (weakly 2-chained idempotents are strongly 2-chained).

(they are also equivalent with statements (3), (4), (6) of Theorem 2.1.)

Proof. The implications (2) ⇒ (3) ⇒ (4) and (3) ⇒ (9) are straightforward, (6) ⇒ (7) by
Lemma 2.2, (7) ⇐⇒ (8) by Theorem 1.1 and (7) ⇒ (10), (6) ⇒ (5) as associate idempotents
are isomorphic (and isomorphy is transitive). We prove that (4) ⇒ (5) ⇒ (1) ⇒ (2) and
that (9) ⇒ (10) ⇒ (2) ⇒ (6).
(4) ⇒ (5) : Assume (4) and let e, f, g ∈ E(S) so that e ∼r g ∼ℓ f (the other case

e ∼ℓ g ∼r f is dual). As e = ge, eg = g = gf , fg = f then by (4) e ≡ g ≡ f (mod J(R)).
(5) ⇒ (1) : Let a ∈ R be a regular element and let b, b′ ∈ V (a). Then ab ∼r ab

′ hence ab ≡
ab′ (mod J(R)), so that b ≡ bab′ (mod J(R)). Dually ba ∼ℓ b

′a hence ba ≡ b′a (mod J(R)),
so that bbab′ ≡ b′ (mod J(R)). Finally b ≡ b′ (mod J(R)).

(1) ⇒ (2) : Let e ∈ idem(R) and x ∈ R. Pose f = e + (ex − exe). Then f ∈ V (e) hence
f ≡ e (mod J(R)) by assumption or equivalently, f − e ≡ ex − exe ≡ 0 (mod J(R)). This
proves that e is right semicentral modulo J(R) and we conclude by duality.
(9) ⇒ (10) : Assume (9) and let e, f, g ∈ idem(R) be such that e ∼r g ∼ℓ f (the other

case e ∼ℓ g ∼r f is dual). As e = ge, eg = g = gf and fg = f then ef = efg = efgf =
efegf = gefegf = gfefegf . By (9), (fe)2 ≡ fe (mod J(R)) so that ef ≡ gfegf ≡ egf ≡
g (mod J(R)). Recall that an ideal I of R is enabling [1] if for any x ∈ R and e ∈ idem(R),
x ≡ e (mod I) implies the existence of f ∈ xR such that f 2 = f and f ≡ e (mod I). Now
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the Jacobson radical is always an enabling ideal by [1, Proposition 5] (or [2, Corollary 3.2])
so that we can use [2, Proposition 3.4]: there exists an idempotent h ∈ fRe such that
h ≡ fge (mod J(R)). Moreover, as e, f ∈ idem(R) and ge = e, fg = f then h satisfies
additionally that e ∼ℓ h ∼r f . Finally e and f are strongly 2-chained and R is E-solid.
(10) ⇒ (2) : Assume that R is E-solid and let e ∈ R. We prove that e is right semicentral

modulo J(R) (ex − exe ∈ J(R) for all x ∈ R). Let any x, p ∈ R and pose s = ex − exe.
We want to prove that sp is right quasi-regular. We decompose sp = spe + (sp− spe). Let
t = pe−epe (so that spe = st). Then e+s, e+t are idempotents and e+s ∼r e ∼ℓ e+t. As R
is E-solid then e+s ∼ℓ h ∼r e+t for some idempotent h and by Clifford and Miller’s theorem,
(e+s)(e+t) = e+st is a unit in eRe. Let q be its inverse in eRe, and let z = −qsp. As eq = q
and spe = st then sp+ z − spz = sp− qsp+ spqsp = sp− qsp+ speqsp = sp− qsp+ stqsp
and as es = s and (e + st)q = e = eq + stq = q + stq then sp = esp = qsp + stqsp, so that
finally sp+z−spz = 0. It follows that sp is right-quasiregular, and by universality of p ∈ R,
s ∈ J(R). Since x ∈ R is also arbitrary e is right semicentral modulo J(R). The conclusion
follows by duality.

(2) ⇒ (6) : Let e = ab, f = ba be isomorphic idempotents in R with b ∈ V (a). As aba = a
and ab ∈ idem(R) then a ≡ a2b ≡ ba2 (mod J(R)), and multiplying by b on the right and on
the left gives ab ≡ ba2b ≡ ba (mod J(R)). □

The proof of (9) ⇒ (10) relies on deep results of [2]. We can avoid them and prove
directly that (9) ⇒ (8). In due course, we will however need the following result due
to Lam that has not appeared yet [12, Theorem 4.3]: A ring R is a strongly IC ring iff
eR(1 − e)Re ⊆ J(R) for every idempotent e ∈ idem(R) (and this works also for non-
unital rings). Then assume (9) and let e ∈ idem(R), x, y ∈ R. Pose s = ex − exe and
t = ye − eye. As s2 = se = 0 = et = t2 and es = s, te = t then e + s and e + t are
idempotents and by (9) (e + t)(e + s) = e + s + t + ts is idempotent modulo J(R). But
e ((e+ t)(e+ s))2 e = (e + s)(e + t) = e + st so that passing to the equivalences classes we
obtain e+ st ≡ e ((e+ t)(e+ s))2 e ≡ e ((e+ t)(e+ s)) e ≡ e (mod J(R)). Finally, st ∈ J(R)
and we conclude by Lam’s theorem that R is strongly IC.

By using the (folklore) result the strong regularity of elements passes to corner rings, we
derive directly from Theorem 2.3 that corner rings of E-solid rings are E-solid. Another
proof goes as follows: let e, f, g, h ∈ idem(R) such that f, h ∈ eRe and f ∼r g ∼ℓ h. As
ef = f and fg = g then eg = g, and dually as he = h and gh = g then ge = g. Finally
g = ege ∈ eRe. This proves that 2-chains pass to corner rings. Next example proves that
the converse statement is false in general: locally E-solid rings need not be E-solid.

Example 2.4. Let R =

(
Z 2Z
2Z 2Z

)
⊆ M2(Z). The ring R is non-unital, and non-zero

idempotents of the ring M2(Z) have rank 1 (in M2(Z)). Let E ∈ idem(R) be a non-zero

idempotent matrix. As Z is projective-free, then E is conjugate to E1 =

(
1 0
0 0

)
in M2(Z),

E = UE1U
−1 for some invertible matrix U . Let A ∈ ERE. Then A = UE1U

−1AUE1U
−1

hence U−1AU = E1U
−1AUE1 = zE1 for some z ∈ Z, and A = UE1zE1E1U

−1 = zE. It
follows that ERE ⊆ ZE is a commutative ring, and any regular element of ERE is strongly
regular. Thus R is locally E-solid.
To prove that R is not E-solid, we use the characterization (1) of Theorem 2.3. By the
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general theory of radicals over Morita contexts [22, Theorem 1]

J(R) =

(
J(Z) ∗
∗ J(2Z)

)
=

(
0 ∗
∗ 0

)
.

Consider the two matrices E1 and A =

(
1 2
2 4

)
. Then A,E1 ∈ V (E1) but A−E1 =

(
0 2
2 4

)
does not belong to J(R). Thus reflexive inverses are not unique modulo the Jacobson radical
and R is not E-solid.

Finally, by using arguments of [10], we derive the following result that deals with unitiza-
tions and square stable range 1.

Corollary 2.5. Let R be a ring. Then the following statements are equivalent:

(1) R is E-solid;

(2) for any unitization R̂ and any a ∈ R, b ∈ R̂, if a is regular and aR̂+bR̂ = R̂ then a2+by

is a unit in R̂ for some y ∈ R̂;
(3) for some unitization R̂ and any a ∈ R, b ∈ R̂, if a is regular and aR̂ + bR̂ = R̂ then

a2 + by is a unit in R̂ for some y ∈ R̂.

Proof. The implication (2) ⇒ (3) is a tautology. To prove that (1) ⇒ (2), assume that R is

E-solid, and let R̂ be any unitization of R. Let also a ∈ R be regular. As R is E-solid then
by Theorem 2.3 a is strongly regular in R hence in R̂. By [10, Theorem 5.2] the element a

has (right) square stable range 1 in R̂, that is for any b ∈ R̂ such that aR̂ + bR̂ = R̂ then

a2 + by is a unit in R̂ for some y ∈ R̂.
Finally, we prove that (3) ⇒ (1). So assume (3) for some unitization R̂. Let a ∈ R be

regular with reflexive inverse a′ ∈ R. As aa′R̂ = aR̂ with aa′ idempotent then a(̂R) is

Dedekind-finite (as a right R-module) iff the corner ring C = aa′R̂aa′ is Dedekind-finite (as
a unital ring). Let x, y ∈ C be such that xy = 1. Then yxy = y and y is regular. Moreover,

y ∈ R since a ∈ R and R is an ideal of R̂. By (4), as yR̂+(1−yx)R̂ = R̂ then y2+(1−yx)z

is a unit for some z. Thus y = (y2 + (1 − yx)z)t for some t ∈ R̂ and right multiplying by
x = xyx we obtain that 1 = xy = xyxy = xyxy2t = y2t since yx(1− yx) = 0. Finally y is a

left and right invertible, x = xy2t = yt and yx = 1. This proves that aR̂ is Dedekind-finite.
By [10, Theorem 5.2], a is then strongly regular in R̂ hence admits a commuting reflexive

inverse a♯ ∈ R̂. But a♯ satisfies the equation a♯ = (a♯)2a hence lies in the ideal R of R̂. This
proves that R is strongly IC (equiv. E-solid). □

The last two equivalent conditions may be seen as a “regular square stable range 1” con-
dition for non-unital rings in the spirit of Vaserstein [23].

Remarks

(1) As the Jacobson radical of regular rings is 0, we recover that R is E-solid regular iff R is
abelian regular (equiv. Clifford, equiv. strongly regular, equiv. inverse, equiv. orthodox);

(2) If nilpotents of R belong J(R) (equiv. are central modulo J(R)), then idempotents are
central modulo J(R) (note that for all x ∈ R and e ∈ idem(R), n = ex−exe is nilpotent);

(3) This happens also if R/J(R) is abelian (because the quotient map sends idempotents of
R to idempotents of R/J(R)). For instance, in [4, Theorem B] (see also [7, Proposition
4.5]), it is proved that any adjoint regular ring with a principal idempotent e ∈ idem(R)
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decomposes as a direct sum of subrings R = eRe ⊕ J(R), with eRe strongly regular.
Consequently, such rings are E-solid.

(4) Recently, Lam [14] introduced q-abelian rings (where eR(1 − e)Re = 0 for all e ∈
idem(R)) and proved that they are strongly IC (E-solid). He also proved that T2(S) is
q-abelian iff S is abelian; Consequently, if S is E-solid but not abelian, then T2(S) is
E-solid (by [5, Theorem 3.8]) but not q-abelian.

(5) In [3], the authors consider the following example: S denotes the localization of Z at
3Z, and Q the quaternions over the ring S. They prove that Nil(Q) ⊆ J(Q), so that
regular elements of Q are strongly regular (actually, as Q is a noncommutative domain,
regular elements are either 0 or invertible), and that T = Q/J(Q) ≃ M2(Z3). It follows
that T contains non-central idempotents. This proves that for a ring R, the equivalent
conditions of Theorem 2.3 are strictly weaker that R/J(R) being abelian.

(6) On the other hand, the condition Nil(R) ⊆ J(R) (being J-reduced) is not necessary for
R to be E-solid. Consider the (non-unital) semigroup algebra R = F2⟨a, b|a2 = b2 = 0⟩.
Then a is nilpotent but ab is not quasi-regular, and a /∈ J(R). However, R is trivially
E-solid since its only idempotent is 0.
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