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Abstract

In this article, recent results about point processes are used in sampling theory. Precisely, we
define and study a new class of sampling designs: determinantal sampling designs. The law of such
designs is known, and there exists a simple selection algorithm. We compute exactly the variance
of linear estimators constructed upon these designs by using the first and second order inclusion
probabilities. Moreover, we obtain asymptotic and finite sample theorems. We construct explicitly
fixed size determinantal sampling designs with given first order inclusion probabilities. We also
address the search of optimal determinantal sampling designs.

1 Introduction
The goal of sampling theory is to acquire knowledge of a parameter of interest θ using only partial
information. The parameter θ is a function of {yk, k ∈ U}, usually the sum or the mean of the yk’s.
This is done by means of a sampling design, through which a random subset {yk, k ∈ S} is observed,
and the construction of an estimator θ̂ of θ based on this random sample. The properties of the
sampling design are thus of crucial importance to get “good” estimators. In practice, the following
issues are fundamental: simplicity of the design (in terms of its definition, theory and/or drawing
algorithm), knowledge of the first and, possibly, second order inclusion probabilities, control of the
size of the sample, effective construction, in particular with prescribed unequal probabilities, statistical
amenability (consistency, central limit theorem,...), low Mean Square Error (MSE)/Variance of specific
estimators based on the design.
In this article, we introduce a new parametric family of sampling designs indexed by Hermitian con-
tracting matrices, determinantal sampling designs, that addresses all theses issues. Section 2 gives their
definition and probabilistic properties. In particular, it is shown that for this family, inclusion proba-
bilities are known for any order. Section 2 also provides a sampling algorithm. Section 3 studies the
statistical properties of linear estimators of a total. It gives algebraic and geometric formulas for the
MSE which provide necessary and sufficient conditions for obtaining a perfectly balanced determinantal
sampling design. In addition, we give asymptotic theorems and concentration inequalities. Section 4
provides effective constructions of fixed size determinantal sampling designs with fixed first order inclu-
sion probabilities. Optimization problems and algorithms are then discussed in Section 5, and applied
on a real data set.
While the use of determinantal processes allows to derive directly statistical results in the field of
survey sampling from well known results in point process theory (Definition 2.1, Theorems 2.1, 3.3,
3.5, Algorithm 2.1), innovative results can nevertheless be found: Theorems 3.1, 3.2, 4.1, 4.4, 5.1, or
Algorithms 5.1 to 5.5. We also make connections with other theories (frame theory or semidefinite
optimization).

2 Definition and general properties

2.1 Definition
According to its definition, an unordered sampling design without replacement (simply called sampling
design afterwards) is a simple point process on a finite set U , that is to say a probability on 2U , set of
parts of U (Borodin (2009), Tillé (2011)).
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Among simple point processes, the general structure and properties of determinantal point processes
have attracted a lot of attention recently (Borodin (2009), Hough et al. (2006), Hough et al. (2009),
Lyons (2003), Soshnikov (2000)). This is (in part) due to the ubiquity of determinantal point processes
in probability theory. They appear for instance in the study of random structures such as uniform
spanning trees, zeros of random polynomials and spectra of random matrices. In the case of a finite set U ,
determinantal point processes are defined through associated matrices called kernels. Many probabilistic
properties of these processes depend on algebraic properties of their kernels, but most of the results
concern Hermitian matrices only. For this reason, and though there exist many interesting examples
of determinantal point processes associated to non-Hermitian matrices, we restrict our attention to the
Hermitian case.
Unless specifically stated, matrices will be complex matrices. For a complex number z, z is its conjugate
and |z| =

√
zz its modulus. We introduce the following notation. For any square matrix K indexed

by U and s ⊆ U , K|s denotes the submatrix of K whose rows and columns are indexed by s. We will
also use the following convention: the determinant of the empty matrix is 1, as is a product over the
empty set (

∏
k∈∅ αk = 1). From the definition of determinantal point processes we derive the following

definition of determinantal sampling designs:

Definition 2.1 (Determinantal sampling design) A sampling design P on a finite set U is a de-
terminantal sampling design if there exists a Hermitian matrix K indexed by U , called kernel, such that
for all s ∈ 2U ,

∑
s′⊇s P(s′) = det(K|s). This sampling design is denoted by DSD(K).

A random variable S with values in 2U and law DSD(K) is called a determinantal random sample (with
kernel K). It satisfies, for all s ∈ 2U ,

pr(s ⊆ S) = det(K|s).

We will also write S ∼ DSD(K).

In the following we will always identify the finite population U of size N with {1, · · · , N}. It follows
from the definition that determinantal sampling designs are unordered and without replacement. Macchi
(1975) and Soshnikov (2000) proved that a Hermitian matrix K defines a determinantal point process,
and as a consequence a DSD(K), iff (if and only if) K is a contracting matrix, that is a matrix whose
eigenvalues are in [0, 1]. We will use the notation 0 ≤ K ≤ IN (Loewner partial order) for a contracting
matrix. It follows from this fundamental result that determinantal sampling designs form a parametric
family of sampling designs, parametrized by contracting matrices.

Example 2.1 (Poisson sampling) Consider a diagonal matrix KΠ with diagonal elements KΠ
kk = Πk

with values in [0, 1]. The corresponding determinantal sampling design satisfies, for all s ∈ 2U ,

pr(s ⊆ S) =
∏
k∈s

Πk.

The inclusion-exclusion principle implies that

pr(S = s) =
∏
k∈s

Πk

∏
k/∈s

(1−Πk).

This is precisely the equation of the Poisson sampling design (with first order inclusion probabilities
pr(k ∈ S) = Πk), which therefore belongs to the family of determinantal sampling designs.

Let K be a Hermitian projection matrix. Then K = K T and K2 = K, hence K is an orthogonal
projection matrix. Therefore, we will make no distinction between projections and orthogonal projec-
tions. As the eigenvalues of K are 0 or 1, then K is a contracting matrix. We can thus associate to
K a determinantal sampling design DSD(K). We will see that DSD(K) enjoys interesting statistical
and computational properties. Such determinantal point processes are sometimes called determinantal
projection processes (Hough et al. (2006)) or elementary determinantal point processes (Kulesza and
Taskar (2011)) in the literature. We will usually write the rank n projection matrix K as K = V V T ,
where V is the (N × n) matrix of an n orthonormal basis of the range of K. Among these sampling
designs, we single out three particular cases.
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Example 2.2 (Projection) Let JN be the square matrix of size N with all terms equal to 1.

1. DSD( 1
N JN ) is the simple random sampling (SRS) of size 1.

2. DSD(IN − 1
N JN ) is the SRS of size N − 1.

3. If K is a diagonal projection matrix, DSD(K) is a non-random sampling design. In particular,
if K = IN , then the design is a census.

Apart from the cases n = N − 1 and n = 1, Kulesza (2012) proved that the SRS is not a determinantal
sampling design.

2.2 Inclusion probabilities
The following formulas for the inclusion probabilities of order 1 and 2 follow from Definition 2.1. As usual
in sampling theory (Särndal et al. (2003)), we denote them by πk and πkl, and let π = (π1, . . . , πN ) T

be the vector of first inclusion probabilities. In matrix formulation, for all k, l ∈ U, setting

πk = pr(k ∈ S) = Kkk, (1)
πkl = pr(k, l ∈ S) = KkkKll− | Kkl |2 (k 6= l), (2)

∆kl =

{
πkl − πkπl = − | Kkl |2 (k 6= l),
πk(1− πk) = Kkk(1−Kkk) (k = l).

(3)

it holds that
∆ = (IN −K) ∗K = (IN −K) ∗K, (4)

where ∗ is the Schur-Hadamard (entrywise) matrix product.

Proposition 2.1 From (3) a determinantal sampling design satisfies the so-called Sen-Yates-Grundy
conditions:

πkl ≤ πkπl (k 6= l). (5)

More generally, a determinantal sampling design has negative associations (Lyons (2003)). In particular,
for disjoint subsets A and B it holds that

pr(A ∪B ⊆ S) ≤ pr(A ⊆ S)pr(B ⊆ S)

It was shown recently that determinantal point processes actually enjoy the strong Rayleigh property
(Borcea et al. (2009), Pemantle and Peres (2014)), a technical property stronger than negative associa-
tion. This property can be defined in terms of the localization of the zeros of the generating function of
the process. These two properties (negative association, strong Rayleigh property) proved very useful
for the study of statistics of determinantal processes (Yuan et al. (2003), Brändén and Jonasson (2012),
Pemantle and Peres (2014)). Some results will be used in Section 3.

2.3 Sample size
Of major importance to statisticians is the sample size of the random sample. It is for instance very
common in practice to work with fixed size samples, that is with samples whose size is non-random
and given. The sample size of a determinantal random sample follows from Theorem 7 in Hough
et al. (2006). For a set A, let ]A denotes its cardinal and for a Hermitian matrix K of size N , let
λ1 ≥ λ2 ≥ . . . ≥ λN be the N values on the diagonal of any diagonalizing matrix of K in descending
order (vector of eigenvalues with their multiplicities, in descending order).

Theorem 2.1 (Sample size) Let S ∼ DSD(K). Then the random variable ]S has the law of a sum
of N independent Bernoulli variables B1, · · · , BN of parameters λ1, · · · , λN .

Corollary 2.1 (Sample size (2)) Let S ∼ DSD(K). Then

1. E (]S) = tr(K).
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2. var(]S) = tr(K −K2) =

N∑
i=1

λi(1− λi) =
∑
k,l∈U

∆kl.

3. pr(S = ∅) = 0 iff 1 is an eigenvalue of K.

4. The sample size is less than or equal to the rank of K.

5. DSD(K) is a fixed size determinantal sampling design iff K is a projection matrix, and the size
equals the rank of K.

Proof. It holds that var(]S) =
∑
k,l∈U ∆kl (see Särndal et al. (2003)). The other results follow directly

from Theorem 2.1 and the spectral decomposition of Hermitian matrices. �

Example 2.3 (Unitary transform) Let K ∈MN×N (C) be a contracting matrix and S ∼ DSD(K).
Let also W ∈ MN×N (C) be a unitary matrix (WW

T
= IN ). Then KW = WKW

T
is a Hermitian

matrix with the same eigenvalues as K. It follows that SW ∼ DSD(KW ) exists, with ]SW =
law

]S.

2.4 Additional properties
We give here some other general probabilistic results on determinantal sampling designs and their
interpretation in terms of sampling theory. We refer to Lyons (2003) and Hough et al. (2006) for their
probabilistic versions.

Proposition 2.2 (Complementary sample) Let S ∼ DSD(K). The complementary random sam-
ple Sc is a determinantal random sample with kernel IN −K.

Proposition 2.3 (Domain) Let DSD(K) be a determinantal sampling design on U with kernel K,
and let A ⊆ U be a subpopulation (or domain). Then the restriction DSD(K)|A of DSD(K) to A is a
determinantal sampling design on A with kernel K|A, the submatrix of K whose rows and columns are
indexed by A:

DSD(K)|A = DSD(K|A).

Proposition 2.4 (Stratification) Let {U1, . . . , UH} be a partition of U into H strata. The sampling
design DSD(K) is stratified iff the matrix K admits a block diagonal decomposition relative to these
strata, that is k ∈ Uh, l ∈ Uh′ , h 6= h′ implies Kkl = 0.

By using the inclusion-exclusion principle, Lyons (2003) shows that the probabilities of disjunction are
also given by a determinant (Theorem 5.1 Equation (5.2) for fixed size designs and Equation (8.1) for
random size designs).

2.5 Sampling algorithm
A general algorithm for simulating a determinantal sampling design is provided in Hough et al. (2006),
including a proof of its validity in a very general setup. Other implementations of this algorithm can
be found in Scardicchio et al. (2009) and Lavancier et al. (2015). We consider the latter since it is more
suitable and efficient when N is large. Algorithm 2.1 samples from fixed size n determinantal sampling
designs. Let K be a projection matrix.

Algorithm 2.1

1. Find a (N,n) matrix V such that K = V V
T
. Let vTk be the kth line of V .

2. Sample one element kn of U with probabilities Πn
k = ||vk||2/n, k ∈ U .

3. Set e1 = vkn/||vkn ||.

4. For i = (n-1) to 1 do:

(a) sample one ki of U with probabilities Πi
k = 1

i [||vk||
2 −

∑j=n−i
j=1 |ejT vk|2], k ∈ U ,
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(b) set wi = vki −
∑j=n−i
j=1 |ejT vki |ej and en−i+1 = wi/||wi||.

5. End for.

6. Return {k1, · · · , kn}.

The resulting sample is a realization of DSD(K).

Step 1 of Algorithm 2.1 can be computationally costly, for it involves the decomposition of the N ×N
matrix K in V V

T
which may be time consuming for very large population size N . Therefore it is

preferable to have a description of the matrix K directly in terms of V . This is the case for the matrices
defined in Theorems 4.1, 4.4 and E.1 (or at Step 2 of Algorithm 2.2).
Algorithm 2.2 describes a procedure to sample from any determinantal sampling design, by expressing
it as a mixture of fixed size sampling designs (Theorem 7 in Hough et al. (2006)).
Let K be a contracting matrix.

Algorithm 2.2

1. Find the rank one decomposition K =
∑N
i=1 λiφiφ

T

i .

2. Simulate a vector b whose components are independent Bernoulli variables with parameter λ1, · · · , λN ,
the eigenvalues of K.

3. Construct the projection matrix Kb =
∑N
i=1 biφiφ

T

i .

4. Sample from DSD(Kb) by Algorithm 2.1.

The resulting sample is a realization of DSD(K).

3 Estimation of a total

3.1 Linear estimators and their Mean Square Error
Let y = (y1, · · · , yN ) T be a variable of interest on the population U = {1, · · · , N}. Typical parameters
to estimate are the total ty =

∑
k∈U yk or the mean value my = ty/N . Let DSD(K) be a determinantal

sampling design on U with kernel K. An estimator of ty based on DSD(K) is called linear and
homogeneous if there exist real weights wk, k ∈ U such that the estimator writes

t̂yw =
∑
k∈S

wkyk, with S ∼ DSD(K)

The Mean Square Error (MSE) decomposes as:

MSE(t̂yw) =

Variance︷ ︸︸ ︷∑
k∈U

∑
l∈U

wkwlykyl∆kl +


Bias︷ ︸︸ ︷∑

k∈U

(wkπk − 1)yk


2

(6)

=
∑
k∈U

wkwlykyl(Kkk(1−Kkk))−
∑
k∈U

∑
l 6=k

wkwlykyl|Kkl|2

+

[∑
k∈U

(wkKkk − 1)yk

]2

(7)

where ∆kl is defined by Equation (3). An unbiased estimator (for all variables y !) then exists only if
πk > 0 for all k ∈ U . In this case it should satisfy wk = π−1

k . The corresponding estimator,

t̂yHT =
∑
k∈S

π−1
k yk,
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is known as the Horvitz-Thompson estimator (Horvitz and Thompson (1952)). In the sequel, we will not
restrict our attention to this estimator only. Indeed, we construct estimators with wk 6= π−1

k in Section
5. In particular, we prove (Corollary 5.1) that in presence of an auxiliary variable x (approximately)
proportional to y and for sampling designs of fixed size n, it may be interesting to consider the linear
and homogeneous estimator with vector of weights wopt =

(
(nx1)−1tx, . . . , (nxN )−1tx

)T .
If the sampling design is of fixed-size, the MSE becomes:

MSE(t̂yw) = −1

2

∑
k∈U

∑
l∈U
l 6=k

(wkyk − wlyl)2∆kl +

[∑
k∈U

(wkπk − 1)yk

]2

(8)

=
1

2

∑
k∈U

∑
l∈U
l 6=k

(wkyk − wlyl)2|Kkl|2 +

[∑
k∈U

(wkπk − 1)yk

]2

(9)

Thus, to achieve small variance for a fixed size sampling design, |Kkl|2 has to be small when (wkyk −
wlyl)

2 is large. Equivalently, for a given set of first order inclusion probabilities, πkl has to be as close
as possible to πkπl (Equation (3), Proposition 2.1). Therefore, one has to find a trade-off between
fixed-size sampling and Poisson sampling. The next sections provide instances of such sampling designs
(Theorem 3.1, Corollary 4.1, Theorem 4.4, Algorithm 5.1).

3.2 Mean Square Error for determinantal sampling designs
In the case of a determinantal sampling design, the MSE of the homogeneous linear estimator t̂yw =∑
k∈S wkyk of the total ty of a variable of interest y admits algebraic and geometric formulations. They

enable us to provide necessary and sufficient conditions for a perfect estimation of the total of auxiliary
variables.
We introduce the following notations. We let w = (w1, . . . , wN )T and e = (1, . . . , 1)T (e is of size
N). For a vector x, x−1 is its Schur-Hadamard inverse, and Dx denotes the diagonal matrix with
diagonal x, whereas for a matrix A, diag(A) is the vector of diagonal elements. For any two matrices
A,B ∈ MN (C), 〈A,B〉 = tr(A TB) =

∑
k,l ak,lbk,l denotes the canonical scalar product on MN (C).

The associated Frobenius norm is denoted by |A|.
We also define z = w ∗ y (Schur-Hadamard product) and diagonal matrices Z = Dw∗y, Z1/2 = D√w∗y
where the square root is taken in the complex sense for negative entries of w ∗ y. Finally, we pose
〈〈A,B〉〉 = 〈Z1/2 TAZ1/2, Z1/2BZ1/2 T 〉. Note that Z1/2 = (Z1/2) T and Z = Z, two equalities that we
will use thoroughly in the rest of this section.

Proposition 3.1 (Algebraic and Geometric forms of the MSE) Let S ∼ DSD(K). The MSE of
t̂yw satisfies

MSE(t̂yw) = (ω ∗ y) T ((IN −K) ∗K)(ω ∗ y) + [e T (K ∗ IN )(ω ∗ y)− e T y]2 (10)
= 〈〈IN −K,K〉〉+ [〈Dy,KDw − IN 〉]2 (11)

and, in the case of the Horvitz-Thompson estimator,

MSE(t̂yHT ) = var(t̂yHT ) = (diag(K)−1 ∗ y) T ((IN −K) ∗K)(diag(K)−1 ∗ y) (12)
= 〈〈IN −K,K〉〉. (13)

Proof. These formulas follow from the classical equality tr(AB) = tr(BA) and the following equality
relating the trace and the Schur-Hadamard product (Horn and Johnson (1991)): for any two vectors
x, y and any two matrices A,B it holds that x TA ∗By = tr(DxADyB

T ). �
Recently, Deville (2012) raised the following question. For a given vector y, when can we estimate
perfectly the total y, using a sampling design with fixed first order inclusion probabilities (and an
homogeneous linear estimator)? Using the previous equations, we provide necessary and sufficient
conditions within determinantal sampling designs.
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Theorem 3.1 (Perfect Estimation) Assume y takes only non-zero values. Let S ∼ DSD(K) and w
be a vector of weights with non-zero values. Let α1, . . . , αq, be the distinct values of wkyk, k = 1, . . . , N ,
and Aj , j = 1, . . . , q be the associated sets of indexes k such that wkyk = αj.
Then the following statements are equivalent:

1. The total ty is perfectly estimated (MSE = 0) by t̂yw.

2. K is a projection that commutes with Z = Dw∗y, and
∑
k∈U wkKkkyk = ty.

3. DSD(K) is a stratified determinantal sampling design with strata Aj , j = 1, . . . , q, of fixed size
within each stratum, and

∑
k∈U wkKkkyk = ty.

In particular, the total ty is perfectly estimated by t̂yHT iff K is a projection with positive diagonal
that commutes with Z = Dπ−1∗y iff DSD(K) is a stratified determinantal sampling design of fixed size
within each stratum, and with π−1

k yk constant on each stratum.

Proof.

1⇒ 2 By Moutard-Fejer’s Theorem (De Klerk (2006) Appendix A), it holds that for any two semidef-
inite matrices A and B, tr(AB) ≥ 0 with equality iff AB = 0. Assume MSE(t̂yw) = 0.
Then tr

(
Z1/2 T (IN −K)Z1/2Z1/2KZ1/2 T

)
= 0. As Z1/2 T (IN − K)Z1/2 and Z1/2KZ1/2 T

are semidefinite, then Z1/2 T (IN −K)ZKZ1/2 T = 0. Multiplying on the left and on the right by
Z−1/2 yields ZK = KZK and taking the conjugate transpose gives ZK = KZK = KZ. Thus
K and Z commute. It also follows that ZK2 = ZK. By multiplying the equality on the left by
Z−1 we get K2 = K, and K is a projection. Also, the bias is 0 and

∑
k∈U wkKkkyk = ty.

2⇒ 3 Reorder the population by strata. Then the commutant of Z is the set of block diagonal matrices
with respect to these stratas, and K is block diagonal. As K is also a projection, each block is
actually a projection, and DSD(K) is of fixed size within each stratum.

3⇒ 1 As the sampling design restricted to each stratum is of fixed size, and the values wkyk are constant,
then the linear estimator t̂yw is constant as a sum of constant terms. Finally t̂yw = E(t̂yw) =∑
k∈U wkKkkyk = ty.

�

Corollary 3.1 Let y be any variable. Decompose the population U in two subsets: U1 = {k ∈ U |yk 6= 0}
and U2 = {k ∈ U |yk = 0}. The total ty is perfectly estimated by t̂yw based on DSD(K) iff K is a
contracting matrix such that K|U1

satisfies the criteria of Theorem 3.1.

Next example shows that non-Horvitz-Thompson estimators may prove useful.

Example 3.1 Let U = {1, . . . , 6} and yT = (0, 0, 2, 4, 8, 8). In the context of equal probability sampling
with πk = 1/2, no determinantal sampling design can produce a perfect Horvitz-Thompson estimator
(there are 4 different values of ykπ−1

k , but there are only 3 blocks). However, t̂yw with

S ∼ DSD(K),K =
1

2


1 z 0 0 0 0
z 1 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 1 1

 , wT = (w1, w2, 3, 3/2, 2, 2)

satisfies MSE(t̂yw) = 0 (for any z ∈ C, |z| ≤ 1 and any w1, w2 ∈ R).

Finally, we provide an alternative view on the variance that comes from the general theory of point
processes and spatial statistics. The quantity

∑
k 6=l wkwlykyl|Kkl|2 can be interpreted as a weighted

measure of global repulsiveness for point processes on a discrete space (Biscio et al. (2016) and Lavancier
et al. (2015) in the continuous setting). As determinantal point processes are repulsive, we then expect
that linear and homogeneous estimators will achieve small variance for certain DSDs compare to other
sampling designs. This is validated by our empirical studies in Section 5.3. The general problem of
minimization of the MSE will be addressed in Section 5.
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3.3 Asymptotic properties of the estimator
The classical settings for the study of asymptotic properties are either the superpopulation models
(Deming and Stephan (1941), Cassel et al. (1977) chapter 4), or the models of nested (finite) populations
as described by Isaki and Fuller Isaki and Fuller (1982). We consider this second setting here. In
particular, (UN , N ∈ N) is a nested sequence of finite populations (UN ⊆ UN+1). The variable of
interest yN may depend on N , (yN , N ∈ N) is a sequence of vectors of size N . Also (wN , N ∈ N) is a
sequence of positive vectors of size N . In all this section, (PN , N ∈ N) is a sequence of determinantal
sampling designs on the populations UN with kernel (KN , N ∈ N), whose diagonal terms are positive,
and (t̂Nyw, N ∈ N) is the sequence of associated linear estimators of tyN with weights wN . To simplify
notations, we consider as before UN = {1, . . . , N}, and omit the superscript (.)N , writing y, w, K and
t̂yw instead of yN , wN ,KN and t̂Nyw(= t̂NyNwN ).
We focus successively on consistency, central limit theorems and concentration/deviation inequalities.
In this setting, most results about consistency concern the mean square convergence of the Horvitz-
Thompson estimator of the mean my = ty/N , see Isaki and Fuller (1982), Robinson (1982), Dol et al.
(1996) in the case of fixed size sampling designs and Cardot et al. (2010), Chauvet (2014) in the general
case. A classical condition within these references is that the sequence 1

N

∑
k∈U (πk)−2y2

k is bounded.
Using Schur’s Theorem Schur (1911) on semidefinite matrices we improve the previous condition for
determinantal sampling designs. Theorem 3.2 also applies to other linear homogeneous estimators than
the Horvitz-Thompson one. Example 3.1 shows the interest of considering such estimators. More
generally, we describe an estimator whose weights result from an optimization problem in Section 5,
Theorem 5.1. We pose m̂yw = t̂yw/N .

Theorem 3.2 (Mean-square convergence) Let S ∼ DSD(K). If

1.
∑
k∈UN

Kkk

(
1− 1

Kkkwk

)2

= O(1),

2. 1
N2

∑
k∈UN

Kkk(wkyk)2 −→
N→∞

0,

then (m̂yw −my) tends to 0 in mean square.
In particular a sufficient condition for the convergence of (m̂HT

y −my) towards 0 in mean square is

1

N2

∑
k∈UN

y2
k

Kkk
−→
N→∞

0.

Proof. By Proposition 3.1

MSE(t̂yw) = (w ∗ y) T ((IN −K) ∗K)(w ∗ y) + [e T (IN ∗K)(w ∗ y)− e T y]2

As the matrices I, K, I−K and K are positive semidefinite, it holds that (I−K)∗K, I ∗K and K ∗K
are positive semidefinite by Schur Theorem. Since (I −K) ∗K = I ∗K −K ∗K then it also holds that
(I −K) ∗K ≤ I ∗K for the partial order on positive semidefinite matrices. It follows that

(w ∗ y) T (I −K) ∗K)(w ∗ y) ≤ (w ∗ y) T (I ∗K)(w ∗ y)

≤
∑
k∈U

(wkyk)2Kkk,

Moreover the bias satisfies

[e T (IN ∗K)(w ∗ y)− e T y]2 =

(∑
k∈U

(Kkk −
1

wk
)(wkyk)

)2

=

(∑
k∈U

(
√
Kkk −

1√
Kkkwk

)(
√
Kkkwkyk)

)2

≤

(∑
k∈U

(
√
Kkk −

1√
Kkkwk

)2

)(∑
k∈U

Kkk(wkyk)2

)
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by Cauchy-Schwartz-inequality. From these inequalities we get

E

(
(
t̂yw − ty
N

)2

)
≤

(
1 +

∑
k∈UN

Kkk(1− 1

Kkkwk
)2

)
1

N2

(∑
k∈U

Kkk(wkyk)2

)

which goes to 0 by assumptions. This completes the proof. �
Regarding equal probability determinantal sampling designs with expected size µ (πk = µ/N for all k)
and a bounded variable y, a sufficient condition for convergence of the Horvitz-Thompson estimator of
the mean is simply µ→∞. More generally

Corollary 3.2 Let S ∼ DSD(K) and set µ = trace(K). If

1. there exists c > 0, such that for all N ∈ N and all k ∈ UN , c µN ≤ Kkk,

2. the sequence ( 1
N

∑
k∈UN

y2
k, N ∈ N) is bounded,

3. the expected size of the samples µ→∞.

Then (m̂HT
y −my)→ 0 in mean square.

Our first condition is weaker than the one in Cardot et al. (2010): “there exists λ > 0, λ ≤ mink∈UN πk”
(take c = λ and use that µ/N ≤ 1). It is actually strictly weaker because in this corollary, the first
order inclusion probabilities (πk = Kkk) can tend to zero. For instance, we can take Kkk = log(N)/N .
The second assumption appears for instance in Robinson (1982).

Apart consistency, some authors have considered the existence of central limit theorems for sampling
designs. However, this proves generally a difficult task even for means or totals, and existing results
either focus on a particular class of sampling designs (equal probability sampling designs: Erdös and
Rényi (1959), Hájek (1960), rejective Poisson sampling: Hájek (1964)), or assume entropy conditions
(Berger (1998)). Assuming only that the determinantal sampling design is “random enough”, we obtain a
central limit theorem by applying the results of Soshnikov (Soshnikov (2000),Soshnikov (2002)). These
articles contain several theorems on the asymptotic normality of functionals of determinantal point
processes. Theorem 1 on linear statistics of bounded measurable functions in Soshnikov (2002) can be
applied straightforwardly to the study of determinantal sampling designs and their associated linear
homogeneous estimators.

Theorem 3.3 (Central Limit Theorem) Let S ∼ DSD(K). Define for all N ∈ N the homogeneous
linear estimators

t̂yw =
∑
k∈S

wkyk and t̂|y|w =
∑
k∈S

wk|yk|

If the variance var(t̂yw)→ +∞ as N →∞ and if

sup
k∈UN

|wkyk| = o
(
var(t̂yw)

)ε
and E(t̂|y|w) = O

(
var(t̂yw)

)δ
for any ε > 0 and some δ > 0, then

t̂yw − E(t̂yw)√
var(t̂yw)

law→ N (0, 1).

The assumption var(t̂yw) → +∞ is natural to get a CLT, but a lower bound on the variance is given
by the smallest eigenvalue of (I −K) ∗K, that is 0 for instance for fixed size sampling designs. The
two other assumptions are more technical. We present a specific case where they are met.

Corollary 3.3 Let S ∼ DSD(K). If for some a, b > 0, supk∈UN |wkyk| = O (log(N)a) and N b =

O
(
var(t̂yw)

)
then

t̂yw − E(t̂yw)√
var(t̂yw)

law→ N (0, 1).
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The condition supk∈UN |wkyk| = O (log(N)a) is for instance met in the case of the Horvitz-Thompson
estimation of a bounded variable, with mink∈UN Kkk ≥ c > 0.

As usual, we can replace the true variance var(t̂Nyw) by any weakly consistent estimator of this variance,
using Slutsky theorem. Classical estimators of the variance (Horvitz and Thompson (1952), Yates and
Grundy (1953), Sen (1953)) need the knowledge and positivity of the second order probabilities. These
quantities are perfectly known for determinantal sampling designs.
As previously recorded, from a very different perspective, the work of Berger (1998) proves asymptotic
normality for fixed size sampling designs under asymptotically maximal entropy conditions. Recently,
the asymptotic normality has also been studied for more general classes of processes (that include the
determinantal ones): processes with negative or positive associations (Patterson et al. (2001), Yuan
et al. (2003)), and processes that satisfy the strong Rayleigh property Brändén and Jonasson (2012).
We adapt here Theorem 2.4 of Patterson et al. (2001) in the case of the Horvitz-Thompson estimator of
the total based on determinantal sampling designs. The variance of the Horvitz-Thompson estimator
decomposes as

var(t̂yHT ) =

Poisson contribution︷ ︸︸ ︷∑
k∈U

y2
k(K−1

kk − 1) −

off-diagonal contribution︷ ︸︸ ︷
2
∑
k∈U

∑
l<k

ykyl
πkπl

|Kkl|2

Set s2 =
∑

k∈UN
y2
k(K−1

kk − 1), r =
∑

k∈UN

∑
l<k

ykyl
πkπl
|Kkl|2 and C = supk∈UN |π

−1
k yk|.

Theorem 3.4 Let S ∼ DSD(K). If s2 →∞, r = o(s2) and C = o(s), then

t̂yHT − ty
s

law→ N (0, 1).

For instance, the DSD defined in Theorem 4.5 satisfies these properties for any bounded variable 0 < a ≤
y ≤ b (Lemma A.1). More trivially, so does the Poisson samplingDSD(DΠ) (with 0 < α ≤ πk ≤ β < 1).
For processes satisfying the strong Rayleigh property, Pemantle and Peres (2014) recently proved con-
centration and deviation inequalities that extend those of Lyons (2003) for the number of points of
determinantal processes in a subdomain. Their application to sampling theory allows derivation of the
following finite distance results.

Theorem 3.5 (Deviation and concentration inequalities)
Let S ∼ DSD(K), µ = trace(K) and C = supk∈U |wkyk|. For all a > 0,

pr(t̂yw − E(t̂yw) > a) ≤ 3 exp

(
− a2

16 (aC + 2µC2)

)
,

pr(|t̂yw − E(t̂yw)| > a) ≤ 5 exp

(
− a2

162 (aC + 2µC2)

)
.

Moreover, if DSD(K) is of fixed size µ = n, then

pr(t̂yw − E(t̂yw) > a) ≤ exp

(
− a2

8nC2

)
,

pr(|t̂yw − E(t̂yw)| > a) ≤ 2 exp

(
− a2

8nC2

)
.

Proof. Function s 7→
∑
k∈U wkyk1{k∈s} is C-Lipschitz for the Hamming distance. Theorems 3.1 and

3.2 of Pemantle and Peres (2014) apply and yield the stated results. �
From this concentration inequality, we derive a new criterion for the convergence in probability of t̂yHT :

Corollary 3.4 Let S ∼ DSD(K). If
√
trace(K)

N supk∈U |
yk
Kkk
| −→
N→∞

0 then (m̂yHT −my)
pr−→

N→∞
0.

Proof. Let C = supk∈UN
|yk|
Kkk

, µ = trace(K). It holds that

pr(|t̂yHT − ty| > Na) ≤ 5 exp

(
− N2a2

162 (NaC + 2µC2)

)

10



By assumption C = o(N) and µC2 = o(N2), and the right hand term above tends to 0. �
In the particular case of a bounded variable |y| ≤ b, we have that

E(m̂yHT −my)2 ≤ CN
N

b ≤ b
√
trace(K)

N
CN

and the assumption of Corollary 3.4 is stronger than the one of Theorem 3.2. This may be disappointing
at first sight because convergence in quadratic mean entails convergence in probability by Tchebyshev’s
inequality. But the improvement of Corollary 3.4 lies in the rate of convergence. Consider for instance
an equal probability determinantal sampling design of size n. Applying Tchebyshev’s inequality in
Theorem 3.2 gives the quadratic rate P (|m̂yHT −my| ≥ a) ≤ nb2

a2 , whereas in Corollary 3.4 we have the

exponential rate P (|m̂yHT −my| ≥ a) ≤ 5 exp
(
− a2n

162(a+2b)

)
.

4 Constructing fixed size determinantal sampling designs with
prescribed first order inclusion probabilities

It is common in practice to work with fixed size sampling designs with prescribed first order inclusion
probabilities. According to Corollary 2.1, constructing such a determinantal sampling design is equiva-
lent to constructing a projection matrix with a prescribed diagonal. The latter problem is a particular
case of the more general issue of constructing Hermitian matrices with prescribed diagonal and spec-
trum that has re-attracted attention over the last years (Schur (1911), Horn (1954), Kadison (2002),
Dhillon et al. (2005), Fickus et al. (2013)). Nevertheless, up to now, the effective constructions found
in the literature are algorithmic and do not provide a closed form for such the matrices.
Relying on the existing literature, we provide in Section 4.1 a closed-form formula for a matrix PΠ, such
that DSD(PΠ) is a fixed size sampling designs with first order inclusion probabilities πk = Πk, for any
prescribed vector of inclusion probabilities Π such that that

∑
k∈U Πk is an integer (which is obviously

a necessary condition and happens to be sufficient, Theorem 4.1). We then discuss the properties of the
associated sampling design DSD(PΠ). We finally focus in Sections 4.2 and 4.3 on the particular case of
equal probability sampling designs. In Section 4.2 we consider the existence of determinantal sampling
designs having the same first and second order probabilities as SRS. The existence or non-existence
of such designs will in particular show that there may not exist DSDs with prescribed second-order
inclusion probabilities, and that DSDs with real kernels form a proper subset of DSDs with complex
kernels. Section 4.3, provides an explicit construction of a parametric family of fixed size and equal
probability determinantal sampling designs relying on the N -th primary unit roots, which may prove
useful in case of a periodic pattern.

4.1 A general construction
Let Π be a vector of size N such that 0 < Πk < 1 and

∑
k∈U Πk = n ∈ N∗. Set k0 = 0 and for all

integer r such that 1 ≤ r ≤ n, let

• 1 < kr ≤ N be the integer such that
kr−1∑
k=1

Πk < r and
kr∑
k=1

Πk ≥ r,

• αkr = r −
kr−1∑
k=1

Πk and αk = Πk if k 6= kr,

• γr
′

r =

√
r′∏

j=r+1

(Πkj−αkj )αkj
(1−αkj )(1−(Πkj−αkj )) for r < r′, γr

′

r = 1 otherwise.

Example 4.1 Let N = 10, n = 3 and Π = (0.2, 0.2, 0.3, 0.3, 0.4, 0.4, 0.3, 0.3, 0.3, 0.3)T , we then get:

• k1 = 4, k2 = 7, k3 = 10,

• α4 = 0.3 = Π4, α7 = 0.2, α10 = 0.3 = Π10.

We define a real symmetric kernel PΠ as follows:
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• for all 1 ≤ k ≤ N , PΠ
kk = Πk,

• for all k > l : PΠ
kl is computed according to formulas in table 1.

Table 1: Values of PΠ
kl : k > l

Values of l
Values of k l = kr kr < l < kr+1

kr′ < k < kr′+1 −
√

Πk

√
(1−Πl)(Πl−αl)

1−(Πl−αl) γr
′

r

√
ΠkΠlγ

r′

r

k = kr′+1 −
√

(1−Πk)αk
1−αk

√
(1−Πl)(Πl−αl)

1−(Πl−αl) γr
′

r

√
(1−Πk)αk

1−αk

√
Πlγ

r′

r

Theorem 4.1 (Fixed size DSD with prescribed unequal probabilities (Construction))
The matrix PΠ is a real projection matrix, and DSD(PΠ) is a fixed size sampling design with first order
inclusion probabilities πk = Πk, 1 ≤ k ≤ N .

The exact knowledge of the coefficients PΠ
kl enables a precise characterization of the sampling designs

so constructed.

Corollary 4.1 Let PΠ be the matrix previously constructed, and DSD(PΠ) the associated sampling
design.

1. If (k, l) ∈]kr, kr+1[2 then πkl = 0.

2. If j ∈]kr, kr+1[, k = kr+1, l ∈]kr+1, kr+2[ then πjkl = 0.

3. Set Br = [1, kr + 1]. Then 1 is an eigenvalue of multiplicity r and 0 an eigenvalue of multiplicity
kr − r of K|B : the random sample S has r or r + 1 elements in Br (r ≤ ](S ∩Br) ≤ r + 1).

4. If k− l is large then PΠ
kl ≈ 0, and the events {k ∈ S} and {l ∈ S} are asymptotically independent.

In practice πkl ≈ ΠkΠl also holds for small values of k − l.

5. Let r1, . . . , rH be the set of values of 1 ≤ r ≤ n such that
∑kr
k=1 Πk = r, and set r0 = 0. Then

DSD(PΠ) is stratified with H strata ]krh−1
, krh ].

Since the proofs of Theorem 4.1 and Corollary 4.1 are important but quite long and technical, we
provide them in Annex B and Annex C respectively.
In the particular case of equal probability DSDs of size n (Πk = nN−1 for all k in U) and when n
divides N , according to point 5, the matrix PΠ is a block diagonal matrix with n blocks, whose entries
are nN−1. The resulting DSD is thus the 1-per-stratum sampling design. This design is known to be
more efficient than systematic sampling of the population in natural order (Fuller (1970)).
In the general case, the construction of PΠ actually leads to a partition of the population into intervals

U =
⋃

1≤r≤n

]kr−1, kr]

such that, if S ∼ DSD(PΠ), then for r = 1, . . . , n:

• S has at most one point into each open interval ]kr−1, kr[,

• S has at least one and at most three points into each closed interval [kr−1, kr].

• S has at most two points into each open interval ]kr−1, kr+1[,

To help understand the way a sample is drawn, Figure 1 describes the quantities used in Theorem 4.1
and shows examples of unfeasible samples for n = 3 and N = 11, giving a graphical representation of
the previous properties.
We also provide an example of two matrices built by the previous method, that points out that the
resulting matrices (and thus the associated determinantal sampling designs) highly depend on the way
the population is ordered.
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Figure 1: Examples of unfeasible samples S ∼ DSD(PΠ), n = 3, N = 11

(a) Description of the quantities used in Theorem 4.1

(b) π137 = 0 and π13 = 0 ((1, 3) ∈]k0, k1[2) (c) π146 = 0 (1 ∈]k0, k1[, 4 = k1, 6 ∈]k1, k2[)

Example 4.2 Let N = 7, n = 4 and Π = ( 1
2 ,

3
4 ,

3
4 ,

1
5 ,

2
5 ,

3
5 ,

4
5 )T and Π′ = ( 1

2 ,
1
5 ,

3
4 ,

4
5 ,

2
5 ,

3
5 ,

3
4 )T . Observe

that Π′ is a permutation of Π, and that Π1 + Π2 + Π3 = 2. Then

PΠ =



1
2

1
2
√

2
1

2
√

2
0 0 0 0

1
2
√

2
3
4 − 1

4 0 0 0 0
1

2
√

2
− 1

4
3
4 0 0 0 0

0 0 0 1
5

√
2

5
2

5
√

3

√
2

5
√

3

0 0 0
√

2
5

2
5

2
√

2
5
√

3
2

5
√

3

0 0 0 2
5
√

3
2
√

2
5
√

3
3
5 −

√
2

5

0 0 0
√

2
5
√

3
2

5
√

3
−
√

2
5

4
5


,

PΠ′ =



1
2

1√
10

√
3

2
√

14

√
3√
70

1√
35

1√
65

1
2
√

26
1√
10

1
5

√
3

2
√

35

√
3

5
√

7

√
2

5
√

7

√
2

5
√

13
1

2
√

65√
3

2
√

14

√
3

2
√

35
3
4 − 1

2
√

5
− 1√

30
−
√

7√
390

−
√

7
4
√

39√
3√
70

√
3

5
√

7
− 1

2
√

5
4
5 −

√
2

5
√

3
−
√

14
5
√

39
−
√

7
2
√

195
1√
35

√
2

5
√

7
− 1√

30
−
√

2
5
√

3
2
5

2
√

7
5
√

13

√
7√

130
1√
65

√
2

5
√

13
−
√

7√
390

−
√

14
5
√

39
2
√

7
5
√

13
3
5 − 1√

10
1

2
√

26
1

2
√

65
−
√

7
4
√

39
−
√

7
2
√

195

√
7√

130
− 1√

10
3
4


.

In the general case, a possible drawback of this general construction is that some of the joint proba-
bilities equal 0 leading to difficulties in estimating the variance. Also, in the case of equal first order
inclusion probability nN−1, the algorithm always provides the same matrix (whatever the reordering),
which properties (of the associated sampling design) may be difficult to interpret unless n divides N , as
explained before. In the next sections we provide other constructions that circumvent these drawbacks,
but only in the case of equal first order inclusion probability.

For a given contracting matrix with a prescribed diagonal, we finally describe a method that leads to
others matrices with the same diagonal and spectrum.

Theorem 4.2 Let K be a contracting matrix, (k, l) ∈ U2 such that Kkk 6= Kll for k 6= l and Kkl 6= 0.
Let Wkl(θ) be the unitary operator whose matrix relative to the canonical basis has cos θ at the (k, k)
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and (l, l) entries, − sin θ and sin θ at the (k, l) and (k, l) entries, respectively, 1 at all other diagonal
entries, and 0 at all other off-diagonal entries, where:

t =
2Re(Kkl)

Kkk −Kll
, cos θ =

1√
1 + t2

and sin θ = t cos θ.

Then matrix K ′ = Wkl(θ)KW
T
kl(θ) has the same diagonal and spectrum as K.

Proof. In the two dimensional case, explicitly construct a (real) plane rotation Q2 so that the diagonal
vector of A′ = Q2AQ

T
2 equals a prescribed vector (a′1, a

′
2) T , while having the same spectrum as A.

Assuming (without loss of generality) that a1 ≤ a′1 ≤ a2 ≤ a′2, that is to say:

Q2

(
a1 a∗21

a21 a∗2

)
QT2 =

(
a′1 ∗
∗ a′2

)
,

where
Q2 =

(
cos θ sin θ
− sin θ cos θ

)
,

t =
Rea21 ±

√
(Rea21)2 − (a1 − a′1)(a2 − a′1)

a2 − a′1
,

cos θ =
1√

1 + t2
, (14)

sin θ = t sin θ.

By letting a1 = a′1 = Kkk and a2 = a′2 = Kll 6= Kkk in these formulas (with Re(akl) 6= 0), we end up
with two rotation matrices: the trivial solution Q2 = I2 and a second non-trivial given in the theorem.
�

Remark 4.1 The rotation Wkl(θ) does not change the modulus of K ′kl. The joint inclusion probabilities
for (k, l) are then the same for DSD(K) and DSD(K ′). Nevertheless the other joint probabilities πk.
or π.l might change.

4.2 (N, n)-simple determinantal sampling designs
SRS is not determinantal in general. This negative result does not however settle the question of the
existence of a determinantal sampling design with the same first and second order inclusion probabilities
as the SRS of size n, that is such that πk = n

N and πkl = n(n−1)
N(N−1) (k 6= l). In this section, we prove that

such DSDs may or may not exist, depending on the values of n and N and the use of complex kernels.

Definition 4.1 ((N,n)-simple designs) Let n ≤ N . A determinantal sampling design is (N,n)-
simple if its inclusion probabilities satisfy

πk =
n

N
and πkl =

n(n− 1)

N(N − 1)
.

According to Corollary 2.1 such designs (if they exist) are of fixed size, whence their kernel is a specific
rank n projection. It appears that such kernels are highly connected with Equiangular Tight Frames
(ETFs), see Tropp (2005) and Sustik et al. (2007):

Theorem 4.3 ((N,n)-simple designs and ETFs) DSD(K) is a (N,n)-simple sampling design iff
K = n

N F
TF , where F = (f1, · · · , fN ) is an ETF of Cn.

The proof is given in Annex D.
As a consequence of Theorem 4.3, a necessary and sufficient condition for the existence of ETFs would
solve the problem of the existence of (N,n)-simple determinantal sampling designs. However, such
a condition is not known for the moment. Nevertheless, there exist necessary conditions (recalled in
Theorem E.1), and numerical studies compensate for the absence of general existence conditions (Sustik
et al. (2007), Casazza et al. (2008)).
Table 2 summarizes their results for n < 9 and N < 100. In the table, the symbol C indicates that no
(N,n)-simple determinantal sampling design with real kernel exists, but that one with complex kernel
does exist.
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Table 2: Existence of (N,n)-simple determinantal sampling designs, depending on the kernel type (real
or complex) for n < 9.

n 3 3 4 4 5 5 6 6 6 7 7 7 8 8 8
N 6 7 7 13 10 11 11 16 31 14 15 28 15 29 57

R C C C R C C R C R C R C C C

Consequently, it holds that:

1. For a given family of (non-determinantal) sampling designs, there may or may not exist a DSD
with the same first and second order inclusion probabilities (for instance, there exists a (7, 3)-
simple DSD but no (10, 3)-simple DSD);

2. There exists a DSD(C), C complex kernel such that no DSD(R), R real kernel has the same first
and second order inclusion probabilities (for instance the (57, 8)-simple DSD can be realized only
using complex kernels). This plaids in favor of using complex kernels.

Example 4.3 ((6,3)-simple determinantal sampling design) Let

K =
1

2



1 1√
5

1√
5

1√
5

1√
5

1√
5

1√
5

1 − 1√
5
− 1√

5
1√
5

1√
5

1√
5
− 1√

5
1 1√

5
− 1√

5
1√
5

1√
5
− 1√

5
1√
5

1 1√
5
− 1√

5
1√
5

1√
5
− 1√

5
1√
5

1 − 1√
5

1√
5

1√
5

1√
5
− 1√

5
− 1√

5
1


.

K is a projection, and DSD(K) is (6, 3)-simple. It is not a simple sampling as the samples {1, 2, 3}
and {4, 5, 6} do not have the same probabilities ( 1

8 (1− 3
5 −

2
5
√

5
) and 1

8 (1− 3
5 + 2

5
√

5
) respectively).

4.3 “Periodic” determinantal sampling designs
In this section, we construct an explicit family of fixed size, equal probability sampling designs, that
exhibit some periodic behavior. The kernels involved are special Toeplitz matrices constructed upon
primitive Nth roots of the unity.

Theorem 4.4 (A parametric family of fixed size, equal probability DSDs) Let n, r,N be three
integers such that n ≤ N and r < N with r,N two relatively prime integers. Let DSD(Kr,N,n) be the
determinantal sampling design with kernel Kr,N,n: Kr,N,n

kl = 1
N

sin(
nr(k−l)π

N )

sin(
r(k−l)π

N )
e
ir(n−1)(k−l)π

N ,

Kr,N,n
kk = n

N .

DSD(Kr,N,n) is of fixed size n, and its first and second order inclusion probabilities satisfy πr,N,nk = n
N ,

πr,N,nkl = n2

N2 − 1
N2

sin2(nr(k−l)πN )
sin2( r(k−l)πN )

(k 6= l).

Proof. Let z = e
2iπr
N be any primitive Nth root of the unity with r,N two relatively prime integers.

Set c = n/N and define for all p = 0, . . . , n− 1 the vectors vp =
√
c√
n

(
(zp)

1
, . . . , (zp)

N
)
T . They define,

by construction, an orthonormal family and Kr,N,n =
∑n−1
p=0 vpvp

T = V V T is a projection of rank n,
where V = (v0, · · · , vn−1). Its diagonal elements satisfy

Kr,N,n
kk =

n−1∑
p=0

vp(k)vp
T (k) = n−1c

n−1∑
p=0

1 = c (where vp(k) =

√
c√
n

(zp)k)
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for all k = 1, . . . , N . Its off-diagonal elements satisfy

Kr,N,n
kl =

1

N

n−1∑
p=0

z(k−l)p =
1

N

1− z(k−l)n

1− z(k−l) =
1

N

sin
(
nr(k−l)π

N

)
sin
(
r(k−l)π

N

) e ir(n−1)(k−l)π
N (k 6= l).

The second order inclusion probabilities follows from Equation (2). �
These designs may alternatively be described as the unitary transform of the (non random) DSD that
samples exactly the first n elements of U by the N − by−N unitary Discrete Fourier Transfom Matrix
(DFT Matrix, see for instance Rao and Yip (2000), Dickinson and Steiglitz (1982)).

As contracting matrices form a convex set, we can form the mean of the previous matrices. Properties
of the resulting DSD are given in Theorem 4.5. The result is actually true whether or not N is prime,
but if N is not prime, for some values of r, Kr,N,n might not be contracting.

Theorem 4.5 Let n,N be two integers such that 0 < n < N , and let KN,n = 1
N−1

∑r=N−1
r=1 Kr,N,n.

Then DSD(KN,n) is a determinantal sampling design of random size n with at least one point, such
that all subsets of U of same cardinality have the same probability of occurrence. Its kernel actually
satisfies {

KN,n
kl = N−n

N(N−1)

KN,n
kk = n

N

,

and its first and second order inclusion probabilities satisfy{
πN,nk = n

N ,

πN,nkl = n2

N2 − (N−n)2

N2(N−1)2 , (k 6= l).

Proof. We first compute a simpler form for the kernel.

1

N − 1

N−1∑
r=1

Kr,N,n
kl =

1

N − 1

N−1∑
r=1

1

N

n−1∑
p=0

(e
2iπr
N )(k−l)p

=
1

N

1

N − 1

n−1∑
p=0

N−1∑
r=1

(e
2iπ(k−l)p

N )r

=
1

N(N − 1)

(
N − 1 +

n−1∑
p=1

(

N−1∑
r=0

e
2iπ(k−l)p

N

r

− (n− 1))

)

=
N − n

N(N − 1)

since for p 6= 0,
N−1∑
r=0

e
2iπ(k−l)p

N

r

=
1− (e

2iπ(k−l)p
N )N

1− e
2iπ(k−l)p

N

= 0.

In particular all principal minors of the same size are equal. The characteristic polynomial of KN,n can
be computed as a Hurwitz determinant: p(KN,n) = (1− λ)( n−1

N−1 − λ)N−1. KN,n is thus a contracting
matrix with 1 as maximal eigenvalue, and by Corollary 2.1, pr(S = ∅) = 0. As KN,n is not a projection,
DSD(KN,n) is not of fixed size. �
Still by Corollary 2.1, we can also compute the variance of the sample size: var(](S)) = (N −1)−1(N −
n)(n− 1). As previously recorded, this DSD provides an example of design that satisfies the conditions
of Theorem 3.4 (Lemma A.1).

The kernels Kr,N,n exhibit “approximate” periodicity. We thus expect their associated DSDs to have
peculiar properties. Indeed, the periodicity of the Kr,N,n entails some “exclusion properties” for
DSD(Kr,N,n), as explained by Lemma 4.1 and shown in Figure 2. But the DSD also exhibits a second
“Poissonian” property: apart from these excluded points, the other ones are approximately independent
of a given element (Figure 3.
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Lemma 4.1 (Periodicity and second order inclusion probabilities)
Consider DSD(Kr,N,n) and let k < l ∈ U . Pose b the rest of the Euclidean division of r(l − k) by N ,
r(l − k) = aN + b. Then

πr,N,nkl =
n2

N2
− 1

N2

sin2
(
nbπ
N

)
sin2

(
bπ
N

) =
1

N2

(
n2 − U2

n−1

(
cos

bπ

N

))
where Un−1 is the Chebyshev polynomial of the second kind. In particular if b << N or N − b << N

then πkl ∼= 0, otherwise πkl ∼= n2

N2 .

Proof. The formula follows from the π periodicity of x 7→ sin2 x and one (of the many) definition of
the Chebyshev polynomial. We then deduce the other results from the properties of this polynomial
(in particular that Un−1(1) = n). �
As an application let U = [1, 365] be the days of a year and assume you want a sample such that only
few selected days in two consecutive weeks have the same weekdays. Then you can choose r = 52
(weeks/year). Of course a systematic sample would select perfectly such a sample but with very low
entropy, whereas the sample drawn from DSD(K52,365,n) remains largely random (high entropy). This
is shown by Figure 2 for n = 15 (r = 1, 2), and even more evident for n = 100 (r = 52) (Figure 3).
Indeed in this second case except for two days k, l such that the rest b of the Euclidean division of
r(l − k) by N is less than three, πk,l ∼= 0, 075 = n2N−2 which is the second order inclusion probability
of Poisson sampling (Figure 3).

Figure 2: Inclusion probabilities πik, selected observation (vertical dotted line), previously selected
observations (vertical black line) at step i for the first four steps of Algorithm 2.1 with matricesKr,365,15,
: r=1,2 defined at Theorem 4.4

(a) r = 1, i = 1 (b) r = 1, i = 2 (c) r = 1, i = 3 (d) r = 1, i = 4

(e) r = 2, i = 1 (f) r = 2, i = 2 (g) r = 2, i = 3 (h) r = 2, i = 4

Table 3 plots the first ten weeks of a year for two samples: one drawn according to a DSD(K52,365,100)
by Algorithm 2.1 and the second one according to a SRS.

Table 3: Trying to avoid consecutive weekdays (gray)

Weekdays
Monday
Tuesday

Wednesday
Thursday
Friday

Saturday
Sunday

DSD(K52,365,100)
Weeks

1 2 3 4 5 6 7 8 9 10
? ? ?
? ? ?
? ?

? ? ?
? ? ?

? ? ?
? ?

SRS
Weeks

1 2 3 4 5 6 7 8 9 10
? ? ?

?
? ? ? ?

? ? ?
? ?

? ? ? ? ? ?
? ?
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Figure 3: DSD(K52,365,100), second order inclusion probabilities πkl according to b ∈ [1 : 364]

We finally compare the efficiency of this DSD to SRS and Poisson sampling on periodic, real data. To
this end, we consider the daily values of French electricity consummation in 2015, and compute the
variance of the associated Horvitz-Thompson estimators of the annual consummation by Equation (6).

Table 4 shows the corresponding relative standard deviations (RSDs), where RSD =

√
v(t̂y)

ty
. According

to this criteria, taking into account the periodic structure of the data with the DSD(K52,365,100) leads
to a more accurate estimator than those based on SRS and Poisson sampling (while keeping a high
entropy).

Table 4: RSD of the HT-estimators of the French electricity consummation in 2015 - DSD(K52,365,100),
SRS and Poisson sampling

DSD(K52,365,100) SRS(365,100) DSD(D100/365) = Poisson sampling
0,738 1,658 8,680

5 Optimal strategy
The parametric form of determinantal sampling designs, along with a closed formula for the mean
square error (Equation (11)) allows at least theoretically to search for a pair (DSD(K), w), minimizing
the sum of the MSEs for a set of auxiliary variables. This pair (sampling design, vector of weights) is
sometimes called a strategy in the literature Hájek and Dupac (1981).
It happens that while promising on the theoretical level, solving the optimization problem becomes
rapidly unfeasible practically, notably due to the curse of dimensionality. Thus, after examining the
theoretical issues in the next section, we then give some practical heuristics.

5.1 A generic optimization problem
It is common in the literature to search for sampling designs providing only representative or balanced
samples for a set of Q auxiliary variables, where a sample S is representative for x if

∑
k∈S π

−1
k xk = tx.

The underlying idea is that such estimators should perform well on variables of interest correlated with
the auxiliary variables. Deville and Tillé (2004) provide a general method, called the cube method, for
selecting approximately balanced samples with fixed first order inclusion probabilities and any number
of auxiliary variables.
Regarding DSDs, our approach to provide approximately balanced samples is to interpret representa-
tivity as follows: let us call a strategy (DSD(K), w) representative for x if MSE(t̂xw) = 0. Note that
in our definition, we do not restrict to the Horvitz-Thompson estimator but consider the weights of the
linear estimator as a parameter.
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Obviously, attaining 0 for the MSE is impossible in most cases, but we can still minimize this MSE.
This approach is for instance considered in Fuller (2009) for the Horvitz-Thompson estimator.
Let x1, . . . , xQ be Q auxiliary variables and Θ be a parameter space. From Equation(6) we define the fol-
lowing generic optimization problem, where C(K,w) is an objective function equal to

∑Q
q=1 MSE(t̂xqw)

(up to a constant).

Problem 5.1 (The generic minimization problem) Find

arg min
(K,w)∈Θ

C(K,w) =

Q∑
q=1

(zq) T (IN −K) ∗K)zq + [e T (K ∗ IN )zq − e Txq]2

where zq = w ∗ xq.

We then adjust the parameter space to address the following cases which are of interest for survey
sampling: free problem (with fixed average size of the random samples), optimal DSD for the Horvitz-
Thompson estimator, optimal DSD for fixed weights, optimal DSD with prescribed first order inclusion
probabilities and either free or fixed weights, optimal weights for a fixed DSD. We study more precisely
these optimization problems (notably the objective function) in Annex F.

Table 5: Minimizations problems and their parameter spaces

Problems Parameter spaces Names
DSD of size µ, free weights Θ = Θµ

c,d × RN Problem P1

DSD of size µ, Horvitz-Thompson Θ = {(K,w)|K ∈ Θµ
c,d, wk = K−1

kk } Problem P2

DSD of size µ, fixed weights w Θ = Θµ
c,d × {w} Problem P3

DSD with π = Π, fixed weights w Θ = ΘΠ × {w} Problem P4

DSD with π = Π, free weights Θ = ΘΠ × RN Problem P5

Fixed DSD(K), free weights Θ = {K} × RN Problem P6

where

Θµ
c,d = {K | 0 ≤ K ≤ IN , c ≤ Kkk ≤ d, Trace(K) = µ}

ΘΠ = {KΠ | 0 ≤ KΠ ≤ IN , diag(KΠ) = Π}.

We first solve the free problem with sole constraint Trace(K) = n ≥ Q (where Q is the number of
auxiliary variables). To this end, we consider the non-random sampling design that samples the n first
elements of the population. The set of equations

∑
1≤k≤n wkx

q
k = tqx is consistent by the Rouché-Cappeli

Theorem (Capelli (1892)), and if w is any solution then the associated strategy satisfies MSE(t̂xqw) = 0
for all 1 ≤ q ≤ Q. This "free problem" thus clearly exhibits the drawback of overfitting. This is the
reason people usually either work with the Horvitz-Thompson estimator, or fixed first order inclusion
probabilities, or both. Another possibility is to use the constrained parameter space Θµ

c,d with 0 < c or
d < 1.
Apart from this trivial case, among these problems, only the last one (Problem P6, optimal weights)
admits an explicit solution. More generally, it admits an explicit solution for any sampling design whose
joint probabilities are perfectly known, including the determinantal sampling designs. For such a given
sampling design, the solution leads to some calibration estimator, where, unlike Deville and Särndal
(1992), the weights do not depend on the sample.

Theorem 5.1 (Optimal weights) Let P be a sampling design whose first and second order probabil-
ities are πk, πkl (πkk = πk) and x1, . . . , xQ be Q vectors of auxiliary variables. The linear homogeneous
estimators that minimize the sum of the Q MSEs correspond to weights wopt in the affine subspace:

wopt ∈

((
Q∑
q=1

xqxq
T

)
∗ Ω

)†(( Q∑
q=1

txqx
q

)
∗ π

)
+ ker

((
Q∑
q=1

xqxq
T

)
∗ Ω

)

where Ω = (πkl) is the joint probability matrix of P, π the vector of first order inclusion probabilities,
and M† the Moore-Penrose inverse of a matrix M .
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Proof.

Q∑
q=1

MSE(t̂xqw) =

Q∑
q=1

∑
k,l

∑
wkwlx

q
kx

q
l∆kl +

Q∑
q=1

[∑
k∈U

(wkπk − 1)xqk

]2

=

Q∑
q=1

∑
k,l

wkwlx
q
kx

q
l∆kl +

Q∑
q=1

∑
k,l

(wkπk − 1)xqk(wlπl − 1)xql

=

Q∑
q=1

∑
k,l

wkwlx
q
kx

q
l πkl − 2

Q∑
q=1

∑
k

wktxqπkx
q
k +

Q∑
q=1

t2xq

= wTAw − 2wTB + C

where A = (
∑Q
q=1 x

qxq
T

)∗Ω and B = (
∑Q
q=1 txqx

q)∗π. Minimizing
∑Q
q=1 MSE(t̂xqw) is thus a classical

problem of unconstrained quadratic programming. Since w 7→ wTAw− 2wTB +C is nonnegative then
B ∈ ker(A)⊥, and since A is Hermitian (and spaces are finite dimensional), B ∈ Im(A

T
)⊥⊥ = Im(A),

and thus B = AV for some vector V . Then for any w, wTAw−2wTB+C = (w−V )TA(w−V )+C−V TB
which is minimal for wopt ∈ V + ker(A). Finally, as B = AV and AA†A = A then V ′ = A†B satisfies
B = AV ′. �

Corollary 5.1 Let x1, . . . , xQ be Q auxiliary variables.

• If Q = 1 and xk 6= 0 for all k ∈ U then wopt =
(
(nx1)−1tx, . . . , (nxN )−1tx

)T is an optimal vector
of weights for any sampling design P of fixed size n.

• If wopt is an optimal vector of weights for P then

Q∑
q=1

MSE(t̂xqw) =

Q∑
q=1

t2xq −

((
Q∑
q=1

txqx
q

)
∗ π

)T (( Q∑
q=1

xqxq
T

)
∗ Ω

)†(( Q∑
q=1

txqx
q

)
∗ π

)
. (15)

• If P = DSD(K), then Ω = (IN −K) ∗K + diag(K)diag(K)T .

The optimal weights given by Theorem 5.1 may be far from the values π−1
k = K−1

kk (indeed, in the first
point of Corollary 5.1, they are independent of the first order inclusion probabilities), therefore leading
to a possibly highly biased estimator of ty. A classical way to overcome this issue is either to add
a penalization term or a constraint in the minimization problem. For instance, adding the quadratic
constraints (πkwk − 1)2 ≤ cn−1 for some positive constant c (and n =

∑
k∈U πk →∞) leads to optimal

weights ensuring that the first assumption
∑
k∈U Kkk

(
1− (Kkkwk)−1

)2
= O(1) of Theorem 3.2 is sat-

isfied.

While appealing, all the other problems are hardly tractable, both theoretically and in practice. On
the bright side, we can rewrite all these problems as semidefinite optimization problems (see Annex F),
where the parameter space is a projected spectrahedron, that is the projection of the intersection of the
cone of positive semidefinite matrices and an affine space. And semidefinite optimization (in the convex
and linear setting) has become a major field of optimization theory recently (see for instanceBlekherman
et al. (2013), Vandenberghe and Boyd (1996)). But a significant downside is that the objective functions
of the other problems are not convex. And while efficient algorithms exist in the case of a strictly convex
objective function, problems are extremely difficult otherwise. For instance, even linear semidefinite
optimization is usually NP-hard (Theorem G.1).

In the case of minimization of the EMQ for nonnegative variables xq, when the weights and the first
order inclusion probabilities are fixed (Problem P4, case usually considered in survey sampling), a
striking feature occurs. The objective function is actually concave (see Annex F), and therefore the
solutions are extreme points of the spectrahedron. One of the difficulties in this case is that the extreme
points of spectrahedra do not generally admit a simple characterization. Indeed, the problem of deciding
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whether a given matrix is an extreme point of a given spectrahedron is NP-hard for many spectrahedra.
This is for instance the case for the elliptope of correlation matrices. Problem P4 for this particular
spectrahedra is studied in Annex G. A second major issue in the concave case is that many extreme
points may be arguments of local/non-global minima, and classical algorithms will be trapped in these
local minima, especially as N becomes large.
In practice, existing semidefinite optimization algorithms fail to produce globally optimal solutions when
N is large. Indeed, we have seen in Section 4 that producing a projection element in ΘΠ

K (projections
are extreme points, but not all extreme points are projections) is in itself a difficult task.
In the following, based on algorithmic minimization results for small N (N ≤ 40) and the theoretical
results of the article, we present empirical algorithms to solve Problems P2 to P5. The performances of
the empirical algorithms are presented in Section 5.3.

5.2 Empirical algorithms
We performed nonlinear semidefinite optimization for Problems P2, P3 and P4 using specific semidefinite
optimization algorithms (Polyak (1992), Tütüncü et al. (2001)), for various numbers µ (average sample
size), vectors of inclusion probabilities and vectors of weights, integers N ≤ 40 (size of the population)
and auxiliary variables. Our empirical conclusions are triple. When µ = n is an integer, the minimizer is
always a projection. Therefore, in our search for empirical algorithms, we mainly work with projection
kernels. When Πk = n

N and n divides N , and for one auxiliary variable only (q = 1), the optimal
determinantal sampling design for Problem P4 is the 1-per-stratum sampling design. However, for more
than one auxiliary variable (Q > 1) the solution is generally not stratified (for Πk = n

N and n divides
N).
These results along with the reading of Equation 8 and Corollary 4.1 suggest that Algorithm 5.1 should
produce a low value of C(K) for Problem P4, at least for 1 nonnegative auxiliary variable. We consider
fixed inclusion probabilities Πk such that

∑
k∈U Πk = n and a fixed vector of nonnegative weights w.

Algorithm 5.1 (Ranking and Projecting Algorithm (RPA, Problem P4))
Perform the following steps:

1. Perform a Q multi-dimensional ranking algorithm on the variables wx1, . . . , wkQ. This produces
a permutation σ on the population. Relabel this new population {1, . . . , N} and update the vector
Π accordingly.

2. Construct the projection matrix PΠ with diagonal as in Theorem 4.1.

The resulting strategy is (DSD(PΠ), w) (on the ordered population).

In case of one nonnegative auxiliary variable (Q = 1), Algorithm 5.1 actually produces a zero-variance
estimator for an auxiliary variable x such that after reordering the population by w ∗ x, for all integers
1 ≤ r ≤ n,

∑kr
k=1 Πk = r for some kr (Theorem 3.1 and Corollary 4.1). In this case, the population is

actually divided into n strata with PΠ a projection matrix of rank 1 on each strata. And if this is not
the case, then we can nonetheless divide the population into (at most 2n) strata such that PΠ is a rank
1 contraction matrix on each stratum. Therefore, restricted to each stratum, the solution will achieve
the minimal variance (Theorem G.2).
The situation is drastically different in case of many auxiliary variables (Q > 1) for RQ is not globally
ordered in this case. The choice of the ranking method is then crucial (see Section 5.3), and the matrix
obtained by Algorithm 5.1 may be far from optimal, notably when Q is large. We therefore propose a
greedy algorithm, based on the 2-by-2 rotations Wkl(θ) of Theorem 4.2, to improve a given DSD(K).
It thus needs a non-trivial initialization matrix K0 ∈ ΘΠ (for instance, K0 = PΠ kernel obtained by
Algorithm 5.1).

Algorithm 5.2 (Constrained Unitary Transform Algorithm (CUTA, Problem P4))
Using the notations of Theorem 4.2, for r = 1 to R (fixed in advance) do:

1. For each (k, l) in U2 such that Πk 6= Πl compute the angle θrkl of the rotations of Theorem 4.2;

2. Define (kr, lr) = argmin
(k,r)∈U2

C(Wkl(θ
r
kl)K

r−1
j WT

kl(θ
r
kl), w);
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3. Set Kr = Wkrlr (θ
r
krlr )K

r−1WT
krlr (θ

r
krlr ) and r = r + 1.

If K0 is a projection matrix, then all matrices Kr are projections.

We now combine Algorithm 5.1 and Theorem 5.1 in the following two steps iterative method, that
searches for the best strategy with given first order inclusion probabilities (Problem P5). We need
an initialization strategy (K0, w0) ∈ ΘΠ × RN on the population U = U0 (for instance, K0 = DΠ,
K0 = PΠσ or K0 = KR of Algorithm 5.2, and w0 = Π−1 or w0 = wopt).

Algorithm 5.3 (Iterated RPA for weights (IRPAW, Problem P5))
For r = 1 to R (fixed in advance) do:

1. Perform Algorithm 5.1 with weights wr−1 and set Kr = PΠ, Ur as the kernel and (reordered)
population obtained by the algorithm;

2. Find (one of) the associated optimal weights wr by Theorem 5.1 and set r = r + 1.

Use the strategy (DSD(Kr1), wr1) on population Ur1 , where r1 = argmin
0≤r≤R

C(Kr, wr).

Finally, we propose two algorithms to solve Problems P2 and P3 (free DSD, Horvitz-Thompson or
fixed weights). Algorithm 5.4 is similar to Algorithm 5.3 in that in combines the RPA (Ranking and
Projecting Algorithm 5.1) with the use of optimal weights. But now the optimal weights serve to define
the first order inclusion probabilities for the next step of the algorithm. In the proposed algorithm, we
pose Π ∝ 1/wopt and stop the algorithm if these are not inclusion probabilities. However, we could make
other choices to take into account values outside [0, 1]. We start with an initializing vector α0 = 1/Π0,
where Π0 is a vector of inclusion probabilities summing to n.

Algorithm 5.4 (Iterated RPA for kernels (IRPAK, Problems P2 and P3))
For r = 1 to R fixed in (advance) do:

1. Set Πr
k = n

(
α

(r−1)
k

∑
k∈U

1

α
(r−1)
k

)−1

;

2. Perform Algorithm 5.1 with wr = 1/Πr (Problem P2) or wr = w (Problem P3), and set Kr = PΠr ,
Ur as the kernel and (reordered) population obtained by the algorithm;

3. Find the associated optimal weights αr by Theorem 5.1;

4. If αr is positive and 0 ≤ n
(
αrk
∑
k∈U

1
αrk

)−1

≤ 1 then set r = r+1, otherwise set (Ks, ws) = (Kr, wr)

for r + 1 ≤ s ≤ R and r = R+ 1.

Use the strategy (DSD(Kr1), wr1) on population Ur1 , where r1 = argmin
0≤r≤R

C(Kr, wr).

Finally, in a spirit similar to Algorithm 5.2, we can use unitary matrices to search for an optimal DSD
with free first order inclusion probabilities but fixed average number of points (Problems P2 and P3).
To this end, let W (ρ) be a small-dimensional parametric family of unitary matrices (for instance 2-
by-2 rotations for certain indexes k, l, or Householder matrices) with W (0) = IN . Let K0 be a given
contracting matrix and let w0

k = 1/K0
kk (Problem 2) or w0 = w (Problem 3).

Algorithm 5.5 (Free Unitary Transform Algorithm (FUTA, Problems P2 and P3))
For r = 1 to R fixed in (advance) do:

1. Compute ρr = argminρC(W (ρ)Kr−1W (ρ)
T
, wr−1);

2. Set Kr = W (ρ)Kr−1W (ρ)
T
, wrk = 1/Kr

kk (Problem 2) or wr = w (Problem 3);

3. Set r = r + 1.

Use the strategy (DSD(KR), wR).
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We conclude this section by comparing the different algorithms. The RPA produces one DSD without
relying on actual optimization procedures. Its good performances (see Section 5.3) are explained by
the good properties of the matrix defined by Theorem 4.1 for ranked variables, but highly depend on
the ranking procedure (Table 6). The Iterated RPAs have in common that they construct a panel of
strategies (from RPA) that may be very different at each step, and then choose the best strategy in this
panel. There is no reason that the objective function decreases between two steps, but these algorithms
explore very different regions of the feasible set. By contrast, the algorithms CUTA and FUTA based
on unitary transforms minimize the given criterion at each step of the algorithms. However, CUTA
only changes the strategy locally, thus exploring a small region around the initializing strategy. And
to work, FUTA needs a small-dimensional parametric family of unitary matrices, and therefore also
explores a low-dimensional subset of the parameter space. The resulting improvement in the objective
function may be small.
Therefore we advocate for combinations of the previous algorithms: an “exploring” algorithm followed
by “local improvements”. This is illustrated in Section 5.3.

5.3 Application
The samples for the French household surveys are drawn according to a two-stage cluster sampling
design. We consider a simplified version of the first stage. The population consists of geographical
Primary Units, and the first order inclusion probabilities of the design are proportional to their num-
bers of inhabitants: Πk = nx1

k/tx1 . The sampling design is stratified by region and aims at being
representative for a set of two auxiliary variables: the total amount of unemployment benefit (x2), and
the total amount of taxable incomes(x3). These variables are normalized so that tx2 = tx3 = 1000. We
calibrate our studies on the example of Region Basse-Normandie, where N = 148 and n = 14. We aim
at finding the optimal strategies (K,w) with w either free or equal to diag(K)−1 (Horvitz-Thompson
estimator) that minimize the criterion:

C(K,w) = MSE(t̂x2w) + MSE(t̂x3w).

To do so we implement the previous algorithms successively. Table 6 provides the values of the objective
criterion after each algorithm.

Table 6: Implementing Algorithm 5.1 to 5.5

Benchmark
algo πk wk DSD cube PPS SYS

ranking 1 ranking 2 ranking 3 ranking 1 ranking 2 ranking 3
5.1 Πk Π−1

k 2957 2221 1355 1170 6052 3580 1540
5.2 Πk Π−1

k 1192 1288 1183 - - - -
5.3 Πk woptk 457 617 261 380 255 202 19
5.4 Πopt

k Πopt−1

k 1064 2221 41.6 291 - - -
5.5(a) Πopt

k Πopt−1

k 647 1999 41.6 - - - -
5.5(b) Πopt

k Πopt−1

k 417 1934 39.6 - - - -

All the estimators considered in Table 6 are Horvitz-Thompson estimators except for the third line
where the weights are the optimal weights. Such non-Horvitz-Thompson estimators may perform ex-
tremely well on the auxiliary variables that served for the optimization procedure, but poorly on another
variable of interest due to overlearning and a possibly high bias.

We now describe the precise implementation of the algorithms.

• Algorithm 5.1: we set πk = Πk and wk = Π−1
k . Since there is no total order in R2, we test three

different ranking methods: by x2
k/Πk (j = 1), by (x2

k + x3
k)/Πk (j = 2) and by an Hamilton path

going through the points whose coordinates are (x2
k/Πk, x

3
k/Πk) (j = 3). The benchmark consists

of two other popular sampling designs: the fixed size cube method balanced on (x1, x2), and
the Systematic PPS Sampling (ordered by the same three ranking methods). The cube method
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perform best than the DSDs and than PPS. The results for the former and the latter highly
depend on the ranking method, the Hamilton path being the best.

• Algorithm 5.2: we use the matrices obtained at the previous step to initialize the algorithm and
set R = 300 and wk = Π−1

k . The choice of R is arbitrary but large enough to exhibit convergence of
the algorithm (see Figure 4). This algorithm is not relevant for the benchmark methods. Whether
it be for ranking method j = 1 or j = 3, the DSDs now perform as good as the cube (Figure 4).

• Algorithm 5.3: we set R = 100 and observe that for all the scenarii the minimal value of the
objective function stabilizes rapidly. The initializing matrix K0 is the kernel obtained at the
previous step and w0 = wopt is the optimal vector of weights for this kernel (for each ranking
method). For the benchmark methods, we only compute the optimal weights by Theorem 5.1, Ω
being estimated by Monte Carlo methods. The very good results for the PPS method 3 is due
to the very low entropy of this design leading to a low number of different feasible samples. The
conditions for finding weights leading to balanced samples are close to those of the Rouché-Cappeli
Theorem. Within high entropy sampling designs, DSD with ranking method 3 now performs better
than the cube. The results for the ranking method 2 are less good due to the fact that, with this
method, ranking using w0 = wopt has led to the same ordered population than with w = Π−1, so
that the algorithm stabilized at the first step.

• Algorithm 5.4: we set R = 100 and initialize the algorithm by α = 1/Π. For the benchmark
methods we do as Algorithm 5.4 but with the cube method or PPS replacing Algorithm 5.1. For
all the scenarii, after fluctuations (and high decrease for j = 3), the function r 7→ c(Kr, wr)
becomes non-decreasing. The result for the DSD ranked by the Hamilton path is now close to 0
and much better than the cube equivalent. Unfortunately the method is less efficient for the two
other DSDs: the objective function only decreases at step 1 for j = 1 and never for j = 2. The
choice of the ranking method is then crucial for the DSDs. Finally the method does not work well
for the PPS since at the very first step of the algorithm some of the weights are negative.

• Algorithm 5.5: we set R = 1 and K0 is the kernel obtained at the previous step and w0
k =

1/K0
kk. We test two parametric families of unitary matrices: Householder matrices and two-by-

two rotations (5.5(a) and 5.5(b)). This algorithm is not relevant for the benchmark methods.
For the Householder method, ρ is a unitary vector of R148 or C148 and W (ρ) = I148 − 2ρρT .
For the two-by-two rotations method, we set (k(i), l(i)) the ith most contributing term of the
objective criterion C(K0, w0), written as a sum on (k, l) ∈ U2 of positive terms (see Figure
5). We set ρ = (θ1, . . . , θi, . . . , θ150) and W (ρ) =

∏i=1
i=150Wk(i),l(i)(θi). The two-by-two rotations

method performs better. However its computation time is very much larger than the Householder
method. For the Householder method the results are similar whether ρ is real or complex.

Figure 4: Algorithm 5.2: Evolution of the optimization criterion, DSDs perform as good as the cube.

The curves j = 1, 2, 3 correspond respectively to the 3 ranking methods: by x2
k/Πk (j = 1), by

(x2
k + x3

k)/Πk (j = 2) and by the Hamilton path (j = 3).
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Figure 5: Initializing Algorithm 5.5(a): Lorenz curve of the contribution to the initial criterion.

From Equation (9), we compute for each couple (k, l) its contribution to the criterion as
100 ∗

∑q=Q
q=1 (w0

kx
q
k −w0

l x
q
l )

2|K0
kl|2/C(K0, w0). We then build the associated Lorenz curve. According to

this curve, 1.37%(= 150/(148 ∗ 147/2)) of the couples (k, l) of U2, k < l, explain 71% of the initial
criterion.

Finally, we illustrate in Figures 6a and 6b the Gaussian behavior of the Horvitz-Thompson estimators
based on DSDs, using 10000 samples drawn by Algorithm 2.1 using the DSD that results from the
implementation of Algorithm 5.4.

Figure 6: Ranking method 3, Algorithm 5.4: law of t̂x2HT and t̂x3HT

(a) Law of t̂x2HT (b) Law of t̂x3HT
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6 Conclusion and Perspectives
This article provides theoretical and empirical evidence that determinantal sampling designs may be
useful in sampling theory. Indeed, they offer the possibility to use powerful results from different
domains of mathematics (probability theory, frame theory, matrix theory, semidefinite optimization).
More practically, while the DSDs are indexed by the very large family of Hermitian contracting matrix,
we show that the construction of a single DSD (Theorem 4.1) can be of real practical interest (Section
5). Nevertheless various directions of research remain to be further explored. The major issue concerns
the possibility to use practically DSDs on large population size N . Indeed, while their theoretical
asymptotic relevance is exhibited in Section 3, our parametric family of DSDs is of size N2 and sparse
descriptions have to be found. In the particular case of Theorem 4.1, we could work directly on the rank
one decompositions of the matrices and compute the rotations on these decompositions. This has also
the benefit of avoiding Step 1 of the sampling algorithm (that precisely consists in finding the rank one
decomposition). More generally, the computation time of the sampling algorithm (with or without Step
1) should be compared to classical algorithms. Specific to the optimization procedures is the relevance
of multidimensional ranking algorithms for many auxiliary variables (based for instance on clustering
or multidimensional hamiltonian paths). Another possibility would be to use other constructions than
Theorem 4.1 in the empirical algorithms or to use more efficient unitary matrices. Also, completely
different algorithms could be designed.
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A DSD(KN,n) satisfies the assumptions of Theorem 3.4
Let DSD(K) be a sampling design such that 0 < Kkk = d < 1 for all k ∈ U and |Kkl|2 = c for
all k 6= l. Let also y be a bounded variable, 0 < a ≤ |y| ≤ b. Set s2 =

∑
k∈UN y

2
k(K−1

kk − 1),
r =

∑
k∈UN

∑
l<k

ykyl
πkπl
|Kkl|2 and C = supk∈UN |π

−1
k yk|.

Then s2 ≥
∑
k ∈ UNa2(d−1 − 1) = Na2(d−1 − 1). Second, |r| ≤

∑
k∈UN

∑
l<k

b2

d2 c = b2c
d2

N(N−1)
2 , so

that s−2|r| ≤ b2

a2
c

d(1−d)
N−1

2 . And third, C = supk∈UN |π
−1
k yk| ≤ bd−1 so that s−2C2 ≤ b2

a2
d2N

d(1−d)n2 .
We use these computations to deduce:

Lemma A.1 Let DSD(KN,n) be the determinantal sampling design defined in Theorem 4.5 and y be
a bounded variable such that 0 < a ≤ |y| ≤ b. If 0 < α ≤ nN−1 ≤ β < 1 then s2 → ∞, r = o(s2) and
C = o(s).

Proof. As KN,n
kk = n

N for all k ∈ U and |KN,n
kl |2 = (N−n)2

N2(N−1)2 for all k 6= l then

s2 ≥ N(N − n)

n
a2

|r| ≤ b2(N − n)2

n2(N − 1)2

N(N − 1)

2

≤ b2(N − n)2n2(N − 1)

2N2

s−2|r| ≤ b2

a2

N − n
n(N − 1)

C ≤ bN

n

s−2C2 ≤ b2

a2

N

n(N − n)

under the assumption 0 < α ≤ nN−1 ≤ β < 1 we deduce that

s2 ≥ 1− β
β

Na2 →∞

s−2|r| ≤ b2

a2
(αN)−1 → 0

s−2C2 ≤ b2

a2
(α(1− β)N)−1 → 0

�
Similar computations also show that Poisson sampling with 0 < α ≤ πk ≤ β < 1 also satisfy the
assumptions of Theorem 3.4, whereas (N,n)-simple sampling designs may not satisfy the assumptions
of Theorem 3.4.

B Proof of Theorem 4.1
Let P0 be a (N ×N) rank-n projection matrix whose entries P0(k, l) are 0 apart from (kr + 1, kr + 1)
entries, r = 0, · · · , n− 1 whose values are 1. We aim at transforming in N − 1 steps the diagonal of P0,
without changing its spectrum, to finally end up with a projection matrix PN−1 = PΠ whose diagonal
is Π. We pose Tk =

∑kr+1

i=k αi for kr < k ≤ kr+1. Table 7 shows the expected diagonal entries at each
step.
We use the unitary operator Rq(θ) whose matrix relative to the canonical basis has sin θq at the (q, q)
and (q + 1, q + 1) entries, − cos θq and cos θq at the (q, q + 1) and (q + 1, q) entries, respectively,
1 at all other diagonal entries, and 0 at all other off-diagonal entries. We then build the sequence
Pq = Rq(θq)Pq−1R

T
q (θq), q = 1, . . . , N − 1. Let Pq(k, l) be Pq k,l entry.

Relying on the general relations between the entries of Pq and those of Pq−1 provided byKadison (2002),
we deduce that θq is a solution of an equation depending on whether there exists r such that q = kr:
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Table 7: Diagonal entries of Pq

Step Diagonal entries
q 1 2 3 . . . k1 − 1 k1 k1 + 1 . . . kr − 1 kr kr + 1 . . . N
0 1 0 0 . . . 0 0 1 . . . 0 0 1 . . . 0
1 Π1 T2 0 . . . 0 0 1 . . . 0 0 1 . . . 0
2 Π1 Π2 T3 . . . 0 0 1 . . . 0 0 1 . . . 0
... Π1 Π2 Π3 . . . 0 0 1 . . . 0 0 1 . . . 0

k1 − 1 Π1 Π2 Π3 . . . Πk1−1 ak1
1 . . . 0 0 1 . . . 0

k1 Π1 Π2 Π3 . . . Πk1−1 Πk1
Tk1+1 . . . 0 0 1 . . . 0

... Π1 Π2 Π3 . . . Πk1−1 Πk1
Πk1+1 . . .

...
...

... . . . 0
N − 1 Π1 Π2 Π3 . . . Πk1−1 Πk1

Πk1+1 . . . Πkr−1 Πkr Πkr+1 . . . aN = ΠN

sin2 θq =
1−Πq

1− αq
, (∃r|q = kr)

sin2 θq =
Πq

Tq
, (@r|q = kr).

The definitions of αq and Tq ensure the existence of at least one value for θq and as a consequence the
existence of a real idempotent self-adjoint with a prescribed diagonal Π. Kadison’s Theorem 7 consists
precisely of the latter result. We go one step further and provide a closed-form for this matrix. To do
so, we choose among the solutions for θq the one given in Table 8.

Table 8: Values of θq

∃r|q = kr kr < q < kr+1

sin θq

√
1−Πq
1−αq

√
Πq
Tq

cos θq

√
Πq−αq
1−αq

√
Tq+1

Tq

We then iteratively use of the relations between then entries Pq and those of Pq−1 to deduce an explicit
formulas for PN−1(k, l) = PΠ

kl :

PΠ
kl = sin θk(αl − 1) sin θl

k−1∏
q=l

cos θq, (l = kr ≤ k)

PΠ
kl = sin θkTl sin θl

k−1∏
q=l

cos θq, (l 6= kr ≤ k).

For instance, Tables 9 and 10 show how the entries Pq(k, k1) and Pq(k, k1 + 1) are fixed across the
process leading to the final corresponding entries of PΠ.
Lastly, we consider the case kr < l < kr+1, kr′ < k < kr′+1, r < r′ and provide the corresponding
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Table 9: Building step by step the values Pq(k, k1), k ≥ k1

Line Step (q)
k k1 − 1 k1 k1 + 1 k1 + 2

k1 ak1 Πk1 Πk1 Πk1

k1 + 1 0 cos θk1(αk1 − 1) sin θk1 sin θk1+1 cos θk1(αk1 − 1) sin θk1 sin θk1+1 cos θk1(αk1 − 1) sin θk1

k1 + 2 0 0 cos θk1+1 cos θk1(αk1 − 1) sin θk1 sin θk1+2 cos θk1+1 cos θk1(αk1 − 1) sin θk1

k1 + 3 0 0 0 cos θk1+2 cos θk1+1 cos θk1(αk1 − 1) sin θk1

...
...

...
...

...
Underlying a formula indicates that it will remain unchanged for the rest of the process.

Table 10: Building step by step the values Pq(k, k1 + 1), k ≥ k1

Line Step(q)
k k1 k1 + 1 k1 + 2 k1 + 3

k1 + 1 Tk1+1 Πk1+1 Πk1+1 Πk1+1

k1 + 2 0 cos θk1+1 sin θk1+1Tk1+1 sin θk1+2 cos θk1+1 sin θk1+1Tk1+1 sin θk1+2 cos θk1+1 sin θk1+1Tk1+1

k1 + 3 0 0 cos θk1+2 cos θk1+1 sin θk1+1Tk1+1 sin θk1+3 cos θk1+2 cos θk1+1 sin θk1+1Tk1+1

k1 + 4 0 0 0 cos θk1+3 cos θk1+2 cos θk1+1 sin θk1+1Tk1+1

...
...

...
...

...
Underlying a formula indicates that it will remain unchanged for the rest of the process.

formulas given in Table 1, the other cases being similar.

PΠ
kl = sin θkTl sin θl

k−1∏
q=l

cos θq

=

√
Πk

Tk︸ ︷︷ ︸
sin θk

√
ΠlTl︸ ︷︷ ︸

Tl sin θl

kr+1−1∏
q=l

√
Tq+1

Tq︸ ︷︷ ︸
kr+1−1∏
q=l

cos θq

√
Πkr+1 − αkr+1

1− αkr+1︸ ︷︷ ︸
cos θkr+1

kr+2−1∏
q=kr+1+1

√
Tq+1

Tq︸ ︷︷ ︸
kr+2−1∏
q=kr+1+1

cos θq

√
Πkr+2 − αkr+2

1− αkr+2︸ ︷︷ ︸
cos θkr+2

. . .

. . .

kr′−1∏
q=kr′−1+1

√
Tq+1

Tq

√
Πkr′ − αkr′

1− αkr′

k−1∏
q=kr′+1

√
Tq+1

Tq

=
√

ΠlTl

√
Πk

Tk

√
Tkr+1

Tl

√
Πkr+1

− αkr+1

1− αkr+1

√
Tkr+2

Tkr+1+1

√
Πkr+2

− αkr+2

1− αkr+2

. . .

· · ·
√

Tkr′
Tkr′−1+1

√
Πkr′ − αkr′

1− αkr′

√
Tk

Tkr′+1

=
√

ΠkΠl

r′∏
j=r+1

√
(Πkj − αkj )αkj
(1− αkj )Tkj+1

C Proof of Corollary 4.1
The first two points follow from the calculations of the respective 2× 2 and 3× 3 determinant.

PΠ
|jkl =


Πj

√
(1−Πk)αk

1−αk Πj

√
ΠlΠj

(Πk−αk)αk
(1−αk)(1−(Πk−αk))√

(1−Πk)αk
1−αk Πj Πk −

√
Πl

(1−Πk)(Πk−αk)
(1−(Πk−αk))√

ΠlΠj
(Πk−αk)αk

(1−αk)(1−(Πk−αk)) −
√

Πl
(1−Πk)(Πk−αk)

(1−(Πk−αk)) Πl

 .

Applying Sarrus’s rule, we get:
det(PΠ

|jkl) =
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ΠjΠkΠl−2
ΠjΠl(1−Πk)(Πk − αk)αk
(1− αk)(1− (Πk − αk))

−ΠjΠl(1−Πk)αk
1− αk

−ΠjΠl(1−Πk)(Πk − αk)

(1− (Πk − αk))
− ΠlΠjΠk(Πk − αk)ak

(1− αk)(1− (Πk − αk))
=

ΠjΠkΠl−
ΠjΠl(Πk − αk)αk(2−Πk) + ΠjΠl(1−Πk)αk(1− (Πk − αk)) + ΠjΠl(1−Πk)(Πk − αk)(1− αk)

(1− αk)(1− (Πk − αk))
=

ΠjΠkΠl −
ΠjΠl(Πk − αk)(1− (Πk − αk)) + ΠjΠl(1−Πk)αk(1− (Πk − αk))

(1− αk)(1− (Πk − αk))
=

ΠjΠkΠl −
ΠjΠkΠl(1− (Πk − αk))(1− αk)

(1− (Πk − αk))(1− αk)
= 0

We finally consider points 3 to 5. It holds that PΠ
|Br has the same spectrum as (P0)|Br proving point

3. Point 4 follows from the expression of PΠ
kl as a product of cosines. Finally, point 5 follows from the

implication: if
∑kr

1 Πk = r then Πkr − αkr = 0, and thus PΠ
kl = 0 for k, l in different strata.

D Proof of Theorem 4.3
Let DSD(K) be a (N,n)-simple DSD. Applying Equations (1) and (2), we get that K satisfies{

Kkk = n
N ,

|Kkl|2 = n(N−n)
N2(N−1) (k 6= l).

Let F be a (n × N) matrix such that V = ( nN )1/2F T is an orthonormal basis of the range of K
(K = V V T = n

N F
TF ). It holds that:

1. For all l ∈ 1, . . . , N ,
∑n
k=1 F

2
kl = 1,

2. There exists a nonnegative α such that |
∑n
j=1 FjkFjl| = α =

√
N−n
n(N−1) (k 6= l),

3. FF T = N
n In.

But these properties are exactly those defining an ETF (Tropp (2005), Sustik et al. (2007)).

E Existence of (N, n)-simple DSDs
Theorem E.1 Let 1 < n < N − 1 be two integers.

1. There exists a (N,n) − simple determinantal sampling design only if N ≤ min{n2, (N − n)2}
(Tropp (2005)).

2. There exists a (N,n) − simple determinantal sampling design with a real kernel K only if N ≤
min{n(n+1)

2 , (N−n)(N−n+1)
2 } (Sustik et al. (2007) Theorem C).

3. When N 6= 2n, a necessary condition of the existence of a (N,n)-simple determinantal sampling
design with real kernel K is that the following two quantities be odd integers:

α =

√
n(N − 1)

N − n
, β =

√
(N − n)(N − 1)

n
.

When N = 2n, it is necessary that n be odd and that N − 1 be the sum of two squares (Sustik
et al. (2007) Theorem A and Casazza et al. (2008) Theorem 4.1)

This a only a small part of a rich literature on the subject, going from strongly regular graphs Waldron
(2009) to Gauss sums and finite field theory Strohmer (2008).
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F Optimization problems
Consider the free optimization problem P1, where the only constraint is the average size of the sample,
E(]S) = µ. The parameter space is then Θ = Θµ

c,d × RN where ΘKµ is the set of contracting matrices
of trace µ (with 0 < µ ≤ N)

Θµ
c,d = {K | 0 ≤ K ≤ IN , c ≤ Kkk ≤ d, Trace(K) = µ}

which is a projected spectrahedron.
We can then plug in this problem the optimal weights obtained in Theorem 5.1 and use Corollary 5.1 to
deduce that (K,w) solves Problem 5.1 for Θ = ΘKµ ×RN iff w belongs to the affine subspace described
in Theorem 5.1 and K solves:

Problem F.1 Find
arg min
K∈Θµc,d

− u(K)T (V ∗ Ω(K))
†
u(K)

where u(K) = (
∑Q
q=1 txqx

q) ∗ diag(K), V =
Q∑
q=1

xqxq
T

and Ω(K) = (IN −K) ∗K + diag(K)diag(K)T .

that is therefore a semidefinite minimization problem with non-convex objective function.
A variation of the problem is to consider that all the first order inclusion probabilities are fixed in
advance, and still search for an optimal strategy (Problem P5).
Once again by Theorem 5.1 this rewrites as:

Problem F.2 Find
arg min
K∈ΘΠ

− uT (V ∗ Ω(K))
†
u

where u = (
∑Q
q=1 txqx

q) ∗Π, V =
Q∑
q=1

xqxq
T

and Ω(K) = DΠ −K ∗K + ΠΠT .

where ΘΠ is the set of contracting matrices of diagonal Π:

ΘΠ = {KΠ | 0 ≤ KΠ ≤ IN , diag(KΠ) = Π}.

Simpler but still neither convex nor concave is the objective function of the free problem restricted to
the Horvitz-Thompson estimator (Problem P2):

Problem F.3 Find

arg min
K∈Θµ

Q∑
q=1

(zq) T (IN −K) ∗K)zq

where zq = [diag(K)]−1 ∗ xq.

or the objective function of Problem P3 (fixed weights):

Problem F.4 Find

arg min
K∈Θµ

C(K) =

Q∑
q=1

(zq) T (IN −K) ∗K)zq + [e T (K ∗ IN )zq − e Txq]2

where zq = w ∗ xq.

Finally, Problem P4 (fixed first order inclusion probabilities, fixed weights) can be rewritten as:

Problem F.5 Find

arg min
K∈ΘΠ

−
Q∑
q=1

(zq) T (K ∗K)zq

where zq = w ∗ xq.

(This problem includes the case of the Horvitz-Thompson estimator, take wk = Π−1
k ).

The objective function is concave for nonnegative auxiliary variables xq.
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G Minimization over sampling designs of average size (less than)
one. The Elliptope case.

We first consider equal-probability determinantal sampling designs of average size one. In this case,
the parameter space for Problem F.5 is Θe = {0 ≤ K ≤ IN ,Kkk = 1

N }, the spectrahedron of positive
semidefinite matrices of diagonal 1

N (this set is homothetic to the set of correlation matrices, also known
as the elliptope, which is the set of positive semidefinite matrices of diagonal 1). The literature on the
elliptope and linear optimization over it is abundant, see for instance Ycart (1985), Grone et al. (1990),
Laurent and Poljak (1995), Laurent and Poljak (1996), Kurowicka and Cooke (2003), Laurent and
Varvitsiotis (2014). It is known that (for real matrices):

Theorem G.1 (Linear optimization over the elliptope)

1. For any integer k such that
(
k + 1

2

)
≤ N , there exists a matrix of rank k that is an extreme point

of Θe ( Grone et al. (1990) Theorem 2).

2. The vertices of Θe (extreme points where the normal cone to Θe is of rank N) are the projections
of Θe (rank 1 matrices).

3. It is NP-hard to decide whether the optimum of linear optimization problem max
K∈ σ

〈A,K〉 is reached
at a vertex.

Otherwise stated, the minimization of a linear function over the elliptope can be considerably hard, and
the solution may not be a projection matrix.
Surprisingly, for this particular set (equal probability determinantal sampling designs of average size 1),
the quadratic problem is much more simpler than the linear one. Actually, the minimization Problem
5.1 for all unequal-probability sampling designs of average size less than 1 (not only the determinantal
ones) admits a simple solution.

Theorem G.2 (Optimal sampling design, average size less than 1) Let Π be a vector of inclu-
sion probabilities such that

∑
k∈U Πk ≤ 1, and x1, · · · , xQ be nonnegative variables. There exists a

unique sampling design that minimize
∑Q
q=1 MSE(t̂xqw) within all sampling designs with fixed first or-

der inclusion probabilities πk = Πk. It is the determinantal sampling design P = DSD(KΠ), where
KΠ is any rank 1 matrix with the prescribed diagonal. This sampling design P consists in sampling no
element with probability 1−

∑
k∈U Πk, and the single element k with probability Πk.

Proof. Let P be any sampling design with fixed first order inclusion probabilities πk = Πk. As for
k 6= l, ∆kl ≥ −πkπl then

Q∑
q=1

var(t̂xqw) =

Q∑
q=1

∑
k∈U

(wkx
q
k)2(Πk −Π2

k) +
∑
k 6=l∈U

wkx
q
kwlx

q
l∆kl


≥

Q∑
q=1

∑
k∈U

(wkx
q
k)2(Πk −Π2

k)−
∑
k 6=l∈U

wkx
q
kwlx

q
l πkπl

 ,
with equality iff for k 6= l, ∆kl = −πkπl that is πkl = 0. The only sampling design that satisfies these
equalities is P, which is thus the optimal design.
Consider now KΠ = bb T a rank one matrix with the prescribed diagonal. Then ||b||2 =

∑
k∈U Πk ≤ 1,

and KΠ is a contraction of rank 1. It follows that DSD(KΠ) exists, and has no more than 1 element by
Corollary 2.1, so that πkl = 0, k 6= l. Finally DSD(KΠ) achieves this lower bound, and DSD(KΠ) = P.
�
If
∑
k∈U Πk = 1 (in particular if Πk = 1

N ) we get the following corollaries:

Corollary G.1 (Minimization over the elliptope) Assume the variables x1, · · · , xQ are nonnega-
tive. Then the solutions of Problem F.5 over Θe are the rank one projections with diagonal 1

N (vertices
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of Θe).
More generally, the solutions of Problem 5.1 over Θ with

∑
k∈U Πk = 1 are the rank one projections

with diagonal Πk.

Corollary G.2 (SRS(1) is optimal) The sampling design with equal first order inclusion probabilities
πk = 1

N that minimizes the sum of the MSEs for nonnegative variables is the SRS of size 1, which is
determinantal.

Nonnegativity is crucial in the previous results. Consider the following example:

Example G.1 Let U={1,2}, x1 = −1, x2 = 1 and Π1 = Π2 = 1
2 . Then the variance of the Horvitz-

Thompson estimator for any equal probability sampling design of average size one that satisfies the
Sen-Yates-Grundy conditions is var(t̂xHT ) = 2 − 8∆1,2 ≥ 2, which is the variance of the estimator

under Poisson sampling=DSD
(

1/2 0
0 1/2

)
. But the matrix K =

(
1/2 0
0 1/2

)
= 1/2

(
1/2 1/2
1/2 1/2

)
+

1/2

(
1/2 −1/2
−1/2 1/2

)
is not extremal.

For more complex spectrahedra (
∑
k Πk > 1), a characterization of the solutions of the problem F.5

is unknown. In particular, the question whether the solutions are always projections for integer sums
remains open.
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