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Abstract

We describe a class of semigroup biacts that is analogous to the class
of completely simple semigroups, and prove a structure theorem for those
biacts that is analogous to the Rees-Sushkevitch Theorem. Precisely, we
describe stable, J -simple biacts in terms of wreath products, translations
of completely simple semigroups, biacts over endomorphism monoids of
free G-acts, tensor products and matrix biacts. Applications to coprod-
ucts and left acts are given.
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1 Introduction and notations

A large part of semigroup theory is devoted to their structure. Within this
approach we distinguish (at least) two types of results. One is the so-called
local theory, which provides fine descriptions of semigroups in certain classes -
such as that of completely simple semigroups - and traces its origins back to
Sushkevitch [28], Rees [23] and Clifford [6]. The second is the global theory,
which to a large extent relies on the Krohn-Rhodes Theorem [13, 14, 24] and
gives a broad description of the large class of finite semigroups. Historically,
local theory came first, and makes great use of Green’s relations on principal
ideals [8]. The global theory, with its approach to decomposing semigroups
using wreath products, and classifying up to divisibility, is more modern. It is
interesting to note that the first proofs of the Krohn-Rhodes Theorem actually
relied on the study of transformation monoids, that is, on monoid acts.

Whether or not the global theory of semigroups naturally applies to semi-
group acts, there has been (to the knowledge of the author) only a few attempts
to develop directly a local theory of semigroup acts, at least not without strong
assumptions on the semigroup (as for instance in [3], [17] or [19], where the semi-
groups are assumed to be left or right zero semigroups, or completely 0-simple
semigroups, see also [15] and [21] for actions of inverse semigroups). One in-
stance of a general approach is [20], and the other is Section 3 of [27]. Oehmke’s
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work [20] relies on a condition slightly weaker than finiteness, and the study of
certain congruences on S induced by elements of the S-act. Steinberg [27] relies
on a proper study of certain (finite) transformation semigroups. Neither of these
works is based explicitly on notions corresponding to Green’s relations, even if
both need the action to be transitive (thus L-simple in the sense we introduce
later). In particular both Oehmke and Steinberg consider cyclic acts only. This
may be due to the lack of symmetry of (one-sided) semigroup acts. Our aim is
to show that a general (local) theory of semigroup biacts can be constructed,
similar, but not equivalent to, the local theory of semigroups, by using Green’s
relations on these semigroup biacts. We emphasise that we do this without any
assumption on the semigroup. Precisely, we prove in Section 4 that faithful,
stable, J -simple biacts (defined in Sections 2 and 3) admit descriptions up to
isomorphism (and not just division) in terms of:

1. wreath products involving a group G;

2. left and right translations over a completely simple semigroup (with struc-
ture group G);

3. biacts over endomorphism monoids of free G-acts, where G is a group;

4. tensor products of biacts over a group G;

5. matrix biacts with coefficients in a group G.

This theory may then be fruitfully applied to one-sided semigroup acts (Section
5).

While reading the present article, it is important to have in mind the follow-
ing principle that served as a guideline for this research: in order to properly
understand a general semigroup biact, we believe that one must forget about the
semigroups per se and consider only the action of the elements of the semigroups
on the elements of the act. The reader may think of this as an automaton-
theoretic point of view. In particular, this means that we use only recursively
enumerable sets or relations (formulas with the existential quantifier only) on
the level of elements.

We will use the following conventions for functions on a set. For any two
sets A and B, BA denotes the set of functions from A to B. If X is a set,
by T (X) we mean the full transformation monoid on X, with composition
as binary operation, where we write f on the left of its argument x ∈ X.
That is T (X) = (XX , ◦) with f ◦ g : x 7→ f(g(x)). By T op(X) we mean
the opposite monoid (XX , ◦op) with f ◦op g : x 7→ g(f(x)), where we write
functions on the right of their arguments and denote ◦op by juxtaposition, so
that f ◦op g = fg : x 7→ x(fg) = (xf)g.

To avoid pathological cases, all our semigroups are non-empty. If S is a
semigroup (or a monoid, or a group), we will denote by S its underlying set to
emphasize its role as a set (and by constrast, the role of S as a semigroup) as
in the following sentence: “Let S be a semigroup. Then S is a right S-act with
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action x⊙ s = xs, x ∈ S, s ∈ S.” We denote the fact that S is a subsemigroup
of T by S ⊴ T .

Finally, we try as much as possible to use the following conventions. Lower-
case Latin letters will denote elements, or functions on a set. Lowercase Greek
letters will denote functions with additional structure (morphisms between semi-
groups, semigroup actions...), or congruences. Uppercase letters will denote sets.
An exception to these conventions is made for Green’s relations, in order to fit
with the traditional notation. We thus use script uppercase letters for Green’s
relations and Latin uppercase letters for the associated classes.

2 Semigroup acts and biacts, categories

2.1 Semigroup acts and biacts, (T, S)-biacts

A right semigroup act is a tripleX = (X,S, β) whereX is a set, S is a semigroup,
and β : X × S → X is a semigroup action, that is, a function such that for all
s, s′ ∈ S and x ∈ X β(x, ss′) = β(β(x, s), s′). A right monoid act is a right
semigroup act X = (X,N, β) where N is a monoid and β is a unitary semigroup
action, that is, in addition to being a semigroup action, we have β(x, 1) = x for
all x ∈ X.

By contrast, if S (resp. N) is a given semigroup (resp. monoid), then a right
S-act (resp. right N -act) is just a pair (X,β) where β : X × S → X (resp.
β : X ×N → X) is a semigroup (resp. monoid) action, and we simply say that
X is a right S-act (resp. right N -act). If we want to emphasize the distinction
between the right S-act and its underlying set, we may denote the former by
XS . Left semigroup or monoid acts are defined dually, as are left T -acts (resp.
left M -acts) for T (resp. M) a given semigroup (resp. monoid).

We remark that S-acts appear under different names in the literature, includ-
ing S-sets, S-systems, S-operands, S-polygons, S-automata, S-semimodules,
monars etc.

By a semigroup biact, we mean a 5-tuple X = (T,X, S, α, β) where (T,X, α)
and (X,S, β) are left and right semigroup acts and the following compatiblity
condition holds:

(∀t ∈ T, ∀x ∈ X,∀s ∈ S) α(t, β(x, s)) = β(α(t, x), s).

A monoid biact X = (M,X,N, α, β) is defined accordingly. When T and S are
fixed, the triple (X,α, β) (usually abbreviated to X or TXS) is a (T, S)-biact.
For any t ∈ T, x ∈ X and s ∈ S, when no confusion is possible, we will simply
denote α(t, x) by tx (or t · x) and β(x, s) by xs (or x ⊙ s) and simply refer to
the biact as the triple X = (T,X, S). The compatiblity condition then reads

(∀t ∈ T, ∀x ∈ X,∀s ∈ S) t(xs) = (tx)s

and the expression txs = t(xs) = (tx)s is unambiguous.
In this article, we prefer to work with semigroup biacts than semigroup acts

for reasons of symmetry and duality, that will become more obvious in the study

3



of Green’s relations on biacts.

An important example of a monoid biact is the biact of matrices over a given
ring. This example will lead to a convenient representation of certain biacts in
the sequel.

Example 2.1. Let R be a ring. For any positive integers p, q denote byMp,q(R)
the set of matrices with p rows and q columns. Now fix p and q. EndowMp,p(R)
and Mq,q(R) with the matrix product. Then

Rp,q = (Mp,p(R),Mp,q(R),Mq,q(R))

with biaction the matrix product is a monoid biact.

Actually, the previous biact may be derived from the following construction:

Example 2.2. Let S be a semigroup and e, f two idempotents of S. Then
(eSe, eSf, fSf) is a monoid biact.

To recover Example 2.1, set S = Mp+q,p+q(R), e =

(
Ip 0
0 0

)
, f =

(
0 0
0 Iq

)
and identify Mp,q(R) with the upper right corner eSf =

(
0 Mp,q(R)
0 0

)
.

2.2 The category (T,S)−Biact

Let S and T be semigroups. We form the category (T,S)−Biact as follows:

� Objects are (T, S)-biacts (X,α, β) (thus, α and β are compatible actions);

� Morphisms (X,α, β) → (X ′, α′, β′) are functions f : X → X ′ compatible
with the semigroup actions, that is,

(∀t ∈ T, ∀s ∈ S,∀x ∈ X) f(tx) = tf(x), f(xs) = f(x)s.

The categories Left T -act and Right S-act are defined accordingly. Prod-
ucts and coproducts exists in those three categories. They are defined as the
classical product and coproduct (disjoint union) of sets with the obvious induced
actions. A direct proof of the coproduct case is given in [11] Proposition 2.1.8.
A direct proof for products can be deduced from the fact that the category Left
T -act is actually an equational category (Example 13.15 in [1]). Thus by [1,
Proposition 1.21] products (indeed, more generally, limits) exist and are built
up at the level of sets.

By a (T, S)-subact of the (T, S)-biact (X,α, β) we mean a subset Y ⊆ X
such that TY ∪ Y S ∪ TY S ⊆ Y , endowed with the restrictions of the actions.
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2.3 The category SemBiact

It will also be useful to consider the larger category of biacts over any semi-
groups. We therefore form the category SemBiact as follows:

� Objects are semigroups biacts X = (T,X, S);

� Morphisms (T,X, S) → (T ′, X ′, S′) are triples Φ = (ϕ, f, ψ) where f :
X → X ′ is a function, ϕ : T → T ′ and ψ : S → S

′
are semigroup

morphisms and

(∀t ∈ T, ∀s ∈ S,∀x ∈ X) f(tx) = ϕ(t)f(x), f(xs) = f(x)ψ(s).

The categories LeftSemAct and RightSemAct are defined accordingly.
A morphism Φ = (ϕ, f, ψ) ∈ Hom(X,X′) is epi if ϕ, f and ψ are onto. It

is mono if ϕ, f and ψ are one-to-one. It is an isomorphism if ϕ, f and ψ are
bijections; note that in this case the reciprocals automatically define morphisms.

Example 2.3. (The free semigroup biact over {t}, {x}, {s}.)
Let {t}, {x}, {s} be three one-element sets. Let T = ⟨t⟩ be the free semigroup
generated by t, and S = ⟨s⟩ be the free semigroup generated by s. Finally
define X = {tkxsl, k, l ≥ 0} (with the convention t0x = x = xs0) with actions
for any p, q > 0, k, l ≥ 0, tp · (tkxsl) = tp+kxsl and (tkxsl)⊙ sq = tkxsl+q. Then
X = (T,X, S) is the free semigroup biact over {t}, {x}, {s}.

We will also use the notion of tensor product of biacts (see [11]). Let X =
(T,X,R) and Y = (R, Y, S) be two semigroup biacts. Define the equivalence
relation ν on X × Y generated by all pairs of the form ((xr, y) , (x, ry)). Then
X⊗Y = X×Y/ν is called the tensor product of the right act (X,R) and the left
act (R, Y ) (and indeed satisfies a universal property). The semigroups T and S
acts on X ⊗ Y in a compatible way so that the biact X ⊗Y = (T,X ⊗ Y, S) is
well defined.

2.4 The regular representation

Let X be a set and T be a subsemigroup of T (X). Then T acts on X on the left
by evaluation, so that any transformation semigroup defines a left semigroup act.
Conversely, a classical argument associates to any left T -act TX a subsemigroup
of T (X) that is a homomorphic image of T . The morphism ϕ : T → T (X) is
defined by ϕ(t) = δt for all t ∈ T , where δt : x 7→ tx is the left translation on X
induced by t. This construction extends to biacts as follows.

Two subsemigroups T ⊴ T (X) and S ⊴ T op(X) are compatible if they
commute as functions from X to X, that is for any x ∈ X, f ∈ T and g ∈ S
we have that (f(x))g = f(x)g. If this is the case, they define a semigroup biact
(T,X, S).

Conversely, let X = (T,X, S) be an object in SemBiact. For any t ∈ T one
can define the left translation δt ∈ T (X) by δt : x 7→ tx (resp. for any s ∈ S, the
right translation τs ∈ T op(X) by τs : x 7→ xs). Then ϕ : T → T (X), t 7→ δt is a
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semigroup homomorphism from T to T (X) and dually, ψ : S → T op(X), s 7→ τs
is a semigroup homomorphism from S to T op(X), such that ϕ(T ) and ψ(S) are
compatible. Putting RegT = ϕ(T ) and Reg(S) = ψ(S) we have the biact
RegX = (RegT,X,RegS) is the regular representation of X = (T,X, S).

If Φ = (ϕ, idX , ψ) is an isomorphism then we say that T and S act faithfully
on X, or that X = (T,X, S) is a faithful biact.

Example 2.4. Let (T,X, S) be a semigroup biact with X finite. Then for any
t ∈ T there exits a power tk ∈ T, k ≥ 1 whose action onX is idempotent. Indeed,
consider the regular representation (RegT,X,RegS). As X is finite then T (X)
(hence RegT ) are finite semigroups and δt ∈ RegT has an idempotent power
δkt = δtk . For any x ∈ X, it then holds that tktkx = δtkδtkx = δtkx = tkx.

This representation by functions is very close to the classical case, but it can
in certain cases be interestingly replaced by the following one.

Let (T,X, S) be a semigroup biact. Then TX is a left T -act and it makes
sense to define T -endomorphisms as elements of the endomorphism monoid
Endop ((T,X)) = Endop(TX) = Homop(TX, TX) in the category Left T -act
(the “op” meaning that product is conjugation in reverse order). Dually, we can
also define End ((X,S)) = End(XS) = Hom(XS , XS) in the category Right
S-act. As (tx)s = t(xs) for all t ∈ T, s ∈ S, x ∈ X then the right translation τs
actually defines an element of Endop(TX), and the left translation δt actually
defines an element of End(XS).

In the sequel, we will therefore mostly consider RegT as a submonoid of
End(XS) and RegS as a submonoid of Endop(TX) rather as submonoids of
functions.

In particular, we will use the following construction (inspired by the con-
struction of the dual in functional analysis): Let (T,X) be a left semigroup act
(equivalently, let X be a left T -act). Then Endop(TX) is a monoid, that acts on
X on the right by point evaluation: x ⊙ g = [x]g x ∈ X, g ∈ Endop(TX), such
that (T,X,Endop(TX)) is a semigroup biact. The dual construction holds.

Lemma 2.5. Let (T,X, S) be a faithful biact. Then (T,X) embeds in the left
act (End(XS), X), and dually.

Proof. As the biact is faithful, then T ∼ RegT ⊴ End(XS).

Example 2.6. Consider the right act (X, 1). Then any function from X to X
is an 1-endomorphism and (End(X1), X) = (T (X), X).

Example 2.7 (See also [27]). Let M be a monoid, e an idempotent of M .
Then M acts on the principal left ideal Me on the left, so that (M,Me) is a
left monoid act. It holds that (Me,Endop(MMe)) ∼ (Me, eMe) with right
multiplication as right action. First, the map τ : eme 7→ τeme is injective
because Me ∋ e. Second, as multiplication in a monoid is associative, then
τ(eMe) ⊴ Endop(MMe). Finally, let g ∈ Endop(MMe) and pose m′ = e[e]g.
By construction m′ ∈ eMe. Let x = me = me3 ∈ Me. Then [x]g = [me3]g =
mee[e]g = mem′ = xm′ and τm′ = g. This ends the identification.
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It may happen that the endomorphism monoid Endop(TX) is too large for
our purpose, and we will sometimes replace it with Autop(TX), automorphism
monoid of TX.

3 Analysis of monoid biacts by Green’s relations

In this section, we consider a given semigroup biact X = (T,X, S), or equiva-
lently a fixed (T, S)-biact TXS .

3.1 Green’s relations and Green’s lemma for semigroup
biacts

Analogously to Green’s relations, we define the following relations on the (T, S)-
biact TXS . These relations are defined in [11], but only few results (see Lemma
3.3) are derived from these definitions. As usual S1 (resp. T 1) denotes the
monoid generated by S (resp. T ). Let x, y ∈ X.

1. xR y ⇔ (∃s, s′ ∈ S)xs = y and ys′ = x⇔ xS1 = yS1.

2. xL y ⇔ (∃t, t′ ∈ T ) tx = y and t′y = x⇔ T 1x = T 1y.

3. H = R∧ L.

4. D = R∨ L.

5. xJ y ⇔ (∃t, t′ ∈ T, ∃s, s′ ∈ S) txs = y and t′ys′ = x⇔ T 1xS1 = T 1yS1.

It follows from their definition that these relations are equivalence relations
on X. Relation R (resp. L) is a left (resp. right) congruence, that is for any
t ∈ T , xR y implies txR ty. We will frequently use the following cancellation
property, well known for semigroups: for any xR y and t, t′ ∈ T , if tx = t′x
then ty = t′y, and dually for L.

Let K denote any of these relations. Then the semigroup biact X = (T,X, S)
(resp. the (T, S)-biact TXS) is K-simple if X consists of a single K-class.
Thus,the statement “the (left) action of T on X is transitive” is equivalent
to “the left T -act TX is L-simple”.

Example 3.1. let H and K be subgroups of a group G, and consider the biact
(H,G,K) with multiplication as actions. Let x, y ∈ G. Then xL y ⇔ Hx =
Hy ⇔ x ∈ Hy since H is a group, and L-classes are left cosets. Dually, R-
classes are right cosets and J -classes are two sided cosets Jx = HxK. The
H-class of 1 is H ∩K.

We will need the following (very straightforward) lemma:

Lemma 3.2. Let (T,X) be a L-simple left semigroup act, and x ∈ X. Then
T 1x = Tx = X.
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Proof. As (T,X) is L-simple, then T 1x = T 1y for any y ∈ X andX ⊆ T 1x ⊆ X.
Let now t ∈ T . As y = txLx then exists t′ ∈ T 1, t′tx = x with t′t ∈ T so that
x ∈ Tx and T 1x = Tx.

In the rest of the section, we show that most of the classical results in
semigroup theory regarding Green’s relations admit a biact version.

Lemma 3.3. It holds that D = R ◦ L = L ◦ R and D ⊆ J .

This is Proposition 4.48 in [11]. We recall the proof for self-containedness.

Proof. Let x, y, z ∈ X such that xR yL z. Then exists s, s′ ∈ S1, x = ys and
y = xs′, and exists t, t′ ∈ T 1 such that ty = z and t′z = y. It follows that
y = t′ty = yss′ and as xR y and yL z, then x = t′tx andz = zss′. Pose
u = tys = tx = zs. Then zRuLx as required. By duality R and L commute,
and D = R ◦ L.
The inclusion D ⊆ J then follows from R,L ⊆ J .

Example 3.4 (Bicyclic biact). Let T =< t > be the free semigroup generated
by t, and S =< s > be the free monoid generated by s. Let {x} be a one
element set and pose X = {x = t0x = xs0, tpx, xsq, p, q > 0}. There are
compatible semigroup actions defined for any p, q > 0, k ≥ 0 by tp·(tkx) = tp+kx,
tp · (xsq) = tp−qx = (tpx)⊙ sq if p− q ≥ 0 and tp · (xsq) = xsq−p = (tpx)⊙ sq

if p − q ≤ 0 and (xsk)sq = xsk+q. The semigroup biact X = (T,X, S) is the
quotient of the free semigroup biact over {t}, {x}, {s} by the relation generated
by txs = x. By analogy with the semigroup case, we call this biact the bicyclic
biact. In X, it holds that L = R = D = ∆ the diagonal of X ×X. But relation
J is the universal relation as TyS = X for any y ∈ X.

Green’s lemma holds for these relations.

Lemma 3.5. Let x, y ∈ X and s, s′ ∈ S1 such that xs = y and ys′ = x (xR y).
Then the right translation τs : z 7→ zs is a bijection from Lx to Ly with inverse
τs′ , that preserves R-classes. In particular it sends H-classes to H-classes.

Proof. Let x, y ∈ X and s, s′ ∈ S1 as in the lemma and let z ∈ Lx. Then by
right congruence zsLxs = y and τs maps Lx to Ly. Symmetrically τs′ maps
Ly to Lx. Also by cancellation, as xss′ = x then zss′ = z and as ys′s = y then
zs′s = z, and τs, τs′ are reciprocal (also, as zss′ = z then zsR z).

By duality:

Lemma 3.6. Let x, y ∈ X and t, t′ ∈ T 1 such that tx = y and t′y = x (xL y).
Then the left translation δt : z 7→ tz is a bijection from Rx to Ry with inverse
δt′ that preserves L-classes. In particular it sends H-classes to H-classes.

We deduce directly from these lemmas that within a single D-class, the
H-classes are in bijection.

Corollary 3.7. Any two H-classes in the same D-class are equipotent.
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As a second consequence of Lemmas 3.5 and 3.6 we get:

Corollary 3.8. Let x, y ∈ X, t, t′ ∈ T 1 and s, s′ ∈ S1. Then

1. Either Hxs ∩Rx = ∅ or Hxs ∩Rx = Hxs = Hxs;

2. If Hxs ∩Rx = ∅ then Hxss
′ ∩Rx = ∅;

3. If Hxs ∩Rx = ∅ and txLx then Htxs ∩Rtx = ∅;

4. Either tHx ∩ Lx = ∅ or tHx ∩ Lx = Htx = tHx;

5. If tHx ∩ Lx = ∅ then t′tHx ∩ Lx = ∅;

6. If tHx ∩ Lx = ∅ and xsRx then tHxs ∩ Lxs = ∅.

Proof. We prove only the three first statements. The others are dual.

1. Assume Hxs ∩Rx contains an element y = zs with zH x. By Lemma 3.5
right multiplication by s is a bijection from Lx to Ly that sends H-classes
to H-classes, so that Hy = Hxs. But Hy = Hy ∩ Ry and as yRx, the
conclusion follows.

2. Assume Hxss
′ ∩ Rx contains an element y = zss′ with zH x. Let us

prove that zsRx. As yRx exists u, u′ ∈ S1, xu = y and yu′ = x. Thus
zss′u′ = yu′ = x. Also as zRx exists v, v′ ∈ S1 such that xv = z and
zv′ = x, and zs = xvs. Finally zsRx and Hxs ∩Rx is not empty.

3. Assume txLx and Htxs∩Rtx is not empty. Then by the first item Htxs∩
Rtx = Htxs = Htxs and txsR tx, so that exists s′ ∈ S1 such that txss′ =
tx. Also, as txLx then exists t′ ∈ T 1 such that t′tx = x. Finally x =
t′tx = t′txss′ = xs′ and xs ∈ Hxs ∩Rx.

In particular, we have the equivalences Hxs ⊆ Hx ⇔ Hxs = Hx ⇔ xsHs
and their dual tHx ⊆ Hx ⇔ tHx = Hx ⇔ txH x. Also, we have the following
corollary:

Corollary 3.9. Let x, y ∈ X, t ∈ T 1 and s ∈ S1.

1. If xR y, then txH x⇔ tyH y.

2. If xL y, then xsH x⇔ ysH y.

Proof. Assume that xR y and txH x. By Lemma 3.6 left translation by t is a
bijection from Rx to Rx that preserves L-classes, so that ty ∈ Rx ∩ Ly = Hy.
This ends the proof. The other statement is dual.
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3.2 Stability

Definition 3.10. We say that the semigroup biact X = (T,X, S) (resp. the
(T, S)-biact TXS) is left stable (resp. right stable, stable) if xJ tx⇔ xL tx for
any x ∈ X, t ∈ T (resp. xJ xs⇔ xRxs for any x ∈ X, s ∈ S, resp. both).
It is completely left stable (resp. completely right stable, completely stable) if
xL tx for any x ∈ X, t ∈ T 1 (resp. xRxs for any x ∈ X, s ∈ S1, resp. both).

The definition of left (resp. right) complete stability carries on to one-sided
acts and is equivalent to xL tx for any x ∈ X, t ∈ T (resp. xRxs for any
x ∈ X, s ∈ S).

Example 3.11. Let S be a semigroup. then (S, S, S) is completely stable if
and only if S is completely simple. Indeed, if (S, S, S) is completely stable, then
for any s, t ∈ S, sR stL t and S is D-simple. Also, S is completely regular since
for any s ∈ S, sR s2 L s, and thus s is group invertible by [8] Theorem 7 and
corollary thereto. It follows that S is completely simple as a completely regular
and D-simple semigroup.
Conversely, if S is completely simple it is completely regular and J -simple, and
D = J . Let t ∈ S, x ∈ S. As Rx ∩ Lt is non void (xD t) and the semigroup
is completely regular then Rx ∩ Lt contains an idempotent element. By [18]
Theorem 3, tx ∈ Lx ∩ Rt and the biact is left completely stable. We conclude
by duality.

It holds that:

Lemma 3.12. Let TX be a left T -act and x ∈ X. Then txLx for all t ∈ T
if and only if Lx = Tx. In particular, a left T -act TX is completely left stable
if and only if it is the coproduct (in Left T -acts) of its L-classes, which are
minimal cyclic T -subacts.

Proof. First, for any x ∈ X, Lx ⊆ T 1x. And txLx for all t ∈ T if and only if
Tx ⊆ Lx is a tautology. We thus only have to prove that x ∈ Tx. Let t ∈ T (T
is non-void by assumption). Then txLx and there exists t′ ∈ T 1, t′tx = x. But
t′t ∈ T so that x ∈ Tx and finally Lx = Tx.
Thus, if X is completely left stable, it is the coproduct of its L-classes, which
are cyclic left subacts. Let L = Lx be an L-class, and y ∈ L′ subact of L. Then
yLx and Ty = Ly = Lx = L so that L ⊆ L′ ⊆ L, and L is minimal. Conversely,
assume that X is the coproduct of its L-classes and let x ∈ X. Then Lx is a
T -subact and txLx for all t ∈ T .

A prototypical example of completely left stable act is a space X with a left
group action, for if G is a group acting on X, then for any x ∈ X and g ∈ G
g−1.(g.x) = x.

Example 3.13. Let G be a group acting on X on the left. Then GX is com-
pletely left stable, hence the coproduct of its orbits which are transitive spaces.

It is well known that finite semigroups are stable. So are finite biacts.
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Lemma 3.14. Any finite biact is stable.

Proof. Let (T,X, S) be a biact with X finite, and x ∈ X, s ∈ S such that xJ xs.
Then there exist u ∈ S1, v ∈ S1 such that vxsu = x. It follows that for any
k ∈ N, vkx(su)k = x. Consider τsu ∈ T op(X). As X is finite T op(X) is a finite
semigroup and there exists an integer k ≥ 1 such that τksu is idempotent. Then
xsu(su)k−1 = x(su)k = vkx(su)k(su)k = vkxτksuτ

k
su = vkxτksu = vkx(su)k = x.

We conclude by duality.

Lemma 3.15. Let (T,X, S) be stable. Then J = D.

Proof. We already know that D ⊆ J . We prove that J ⊆ D. Let x, y ∈ X such
that xJ y. Then there exist s ∈ S1, t ∈ T 1 such that x = tys. Then T 1yS1 =
T 1xS1 = T 1tysS1 ⊆ T 1tyS1, and also T 1tyS1 ⊆ T 1yS1. Hence T 1tyS1 =
T 1yS1 and dually T 1ysS1 = T 1yS1. Hence tyJ yJ ys and as (T,X, S) is
stable, then tyL yR ys. As L is a right congruence then tysL ys and finally,
xL ysR y, and xD y since D = L ◦ R.

Example 3.16. Let (T,X) be a left semigroup act, and pose S = Autop(TX).
Then (T,X, S) is completely right stable. Indeed, for any x ∈ X, s ∈ Autop((TX)
it holds that [x]ss−1 = x.

Regarding completely stable biacts, we have:

Lemma 3.17. Let TXS be a completely stable (T, S)-biact. Then it is the co-
product of its J -classes.
Conversely, a stable (T, S)-biact that is the coproduct of its J -classes is com-
pletely stable.

Proof. Assume that TXS is completely stable and let x ∈ X, t ∈ T 1, s ∈
S1. Then txsLxsRx by complete stability and txsD x, whence T 1xS1 ⊆ Jx
(D ⊆ J in general, and D = J in our particular case). But Jx ⊆ TxS since
Jx ⊆ T 1xS1 (by definition of J ) and x ∈ TxS by complete stability and T , S
being non empty semigroups (by convention), see Lemma 3.17. Thus the two
sets are equal. In particular Jx is a (cyclic) (T, S)-subact, and since J -classes
form a partition of X, TXS is the coproduct of its J -classes.
Conversely, if TXS is stable and the coproduct of its J -classes, then each J -
class is a (T, S)-subact. If t ∈ T, x ∈ X then txJ x and by stability, txLx. We
conclude by duality.

Corollary 3.18. Let XN be a unitary right N -act, with N a monoid. It is com-
pletely right stable and indecomposable if and only if it is of the form X ∼ N/ρ,
where ρ is a transitive right congruence on N : (∀m,m′ ∈ N, ∃n ∈ N) mnρm′.

Proof. Consider the monoid biact X = (1, X,N) where 1 is the monoid with
one element with unitary action on X. Assume first that X is completely right
stable and indecomposable. Then X is completely stable hence the coproduct
of its J -classes, and since it is indecomposable X = Jx = xN for some x ∈ X.
As a cyclic right monoid act, it is of the form X ∼ N/ρ, where ρ is a right
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congruence (define ρ by mρn⇔ x0m = x0n, where x0 ∈ X satisfies X = x0N).
And any two ρ-classes are J hence R-related so that ρ is transitive. Indeed, let
m,m′ ∈ N . Then x0mRx0m

′ and there exists n ∈ N such that x0mn = x0m
′,

and finally mnρm′.
Conversely, if X ∼ N/ρ for ρ a transitive right congruence on N , then X = x0N
for some x0 ∈ X (x0 = ρ1 works) and any two elements of X are R-related,
whence it is completely right stable and indecomposable.

Theorem 2.54 of O. Andersen [2] states that any simple semigroup which is
not completely simple contains a copy of the bicyclic semigroup. We prove an
analogous result for semigroup biacts.

Theorem 3.19. Let X = (T,X, S) be a J -simple semigroup biact and assume
that there exist x ∈ X, t ∈ T, s ∈ S such that (tx, x) /∈ L and (x, xs) /∈ R. Then
it contains a copy of the bicyclic biact.

Proof. Let x, t, s as above. As txsJ x then there exist t′ ∈ T 1, s′ ∈ S1 such that
t′(txs)s′ = x. If t′txLx then txLx, thus (t′tx, x) /∈ L and dually (x, xss′) /∈ R.
Let (A,U,B) be the bicyclic biact over {a}, {u}, {b} and (T ′, X ′, S′) be the
subact of (T,X, S) with T ′ =< t′t > the subsemigroup of T generated by t′t,
S′ =< ss′ > the subsemigroup of S generated by ss′ and X ′ = T ′xS′. The map
(ϕ, f, ψ) : (A,U,B) → (T ′, X ′, S′) defined for any p, q > 0 by ϕ(ap) = (t′t)p,
f(u) = x, f(apu) = (t′t)px, f(ubq) = x(ss′)q and ψ(bq) = (ss′)q is a surjective
morphism of biacts. Assume that ϕ is not injective. Then there exist 0 < p < p′

such that (t′t)p = (t′t)p
′
and consequently there exists p′′ such that (t′t)p

′′
is

idempotent. It follows that

(t′t)p
′′−1(t′t)x = (t′t)p

′′
x = ((t′t)p

′′
)2x(ss′)p

′′
= (t′t)p

′′
x(ss′)p

′′
= x

and t′txLx, which is absurd. Thus ϕ is injective. Dually ψ is injective. The
same arguments (on translations of X ′) give that f is also injective, and finally
(ϕ, f, ψ) is a bijective morphism, whence an isomorphism.

Example 3.20. Let X be a finite (T, S)-biact. Then it has (at least one)
minimal subact which is J -simple and completely stable.

3.3 Schützenberger groups

Let X = (T,X, S) be a given semigroup biact (equivalently let TXS be a given
(T, S)-biact).

Let H = R∩L and K = R∩L′ be two H−classes in the same R-class. The
left stabilizer of H defined by stabl(H) = {t ∈ T 1|tH = H} is a submonoid of
T 1, equal to {t ∈ T 1|tH ⊆ H} by Green’s lemma 3.6. It also coincides with
stabl(K) = {t ∈ T 1|tK = K} by Corollary 3.9. The elements of stabl(H) =
stabl(K) define a set of left translations of R (resp. of H) ∆l(H) = {δt ∈
T (R), t ∈ stabl(H)} (resp. δl,H(H) = {δt ∈ T (H), t ∈ stabl(H)}), which is a
group by Green’s lemma. We call ∆l(H) the left Schützenberger group of H,
by analogy with the classical case [25] (but in contrast, we consider translations
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of R rather than translations of H, that is ∆l(H) instead of its isomorphic
group ∆l,H(H)). This group acts freely and transitively on H on the left, and
consequently H is isomorphic (as a left ∆l(H)-act) to ∆l(H). In particular it
acts simply transitively on H, that is for any x, y ∈ H there exists a unique
f ∈ ∆l(H) such that f(x) = y.

Lemma 3.21. Let x ∈ X. Pose H = Hx. Then the function θ : H → ∆l(H)
that maps y = tx 7→ δt is a bijection, with reciprocal π : δt 7→ tx. In particular
∆l(H) acts freely and transitively on H (by δt.h = th).

Proof. Let x ∈ X and t, t′ ∈ T such that tx = t′x ∈ Hx = H. By cancellation,
if zH x then tz = t′z and δt = δt′ . Also δt ∈ ∆l(H) by Lemma 3.6. Finally, by
definition of ∆l(H) and Lemma 3.6, and as δt : x 7→ tx then π is well-defined
from ∆l(H) to H. It is the reciprocal of θ by construction. Finally let y, z ∈ H.
Then (θ(z)θ(y)−1).y = (θ(z)θ(y)−1).(θ(y)x) = θ(z).x = z and the action is
transitive. It is free since δt.y = y means ty = y and by cancellation, tz = z so
that δt = 1, the identity of the group.

By construction, the left Schützenberger groups of H and K in the same
R-class R are equal, that is, ∆l(R∩L) = ∆l(R∩L′). By duality, we define the
right Schützenberger group of H = R ∩ L as the group of right translations of
L ∆r(H) = {τs ∈ T (L)op, s ∈ stabr(H)}.

We now prove that right Schützenberger groups and left Schützenberger
groups are isomorphic (but the isomorphism is not canonical).

Lemma 3.22. Let x ∈ X. Pose H = Hx. Then the function φH : ∆l(H) →
∆r(H) that maps δt 7→ τs where tx = xs is a group isomorphism, with reciprocal
ϕH : ∆r(H) → ∆l(H) that maps τs 7→ δt.

Proof. Let x ∈ X and t ∈ stabl(H). Then txH x and exists s ∈ S1, tx = xs.
As xsH x then s ∈ stabr(H) by Green’s lemma. Let s′ ∈ S1 such that tx = xs′,
and let yLx. As xs = xs′ then by cancellation ys = ys′, and τs = τ ′s as
functions on L = Lx, and φ is well-defined. Let now t, t′ ∈ stabll(H), and let
s, s′ such that tx = xs and t′x = xs′. Then t′tx = t′xs = xs′s, and φ is a
morphism. By duality ϕH : ∆r(H) → ∆l(H) that maps τs 7→ δt where tx = xs
is also well-defined and a morphism, and the two morphisms are reciprocal.

3.4 Coherent cross sections

Consider a D-class D of the (T, S)-biact TXS . Denote by I the set of R-classes
and Λ the set of L-classes of D, and assume that I and Λ contain an element
denoted by 1. For i ∈ I and λ ∈ Λ we pose Hiλ = i ∩ λ and denote it by
iλ for short. A family {xiλ ∈ iλ|i ∈ I, λ ∈ Λ} is called a cross-section. Any
element x ∈ D may be uniquely written x = f(xiλ) = [xiλ]g with f ∈ ∆l(iλ)
and g ∈ ∆r(iλ).

The cross-section is called coherent if the diagram of Figure 1 defined by
the isomorphisms of Lemma 3.22 is commutative, or equivalently if we have the
equality φiλ = φjλϕjµφiµ for all i, j ∈ I and λ, µ ∈ Λ.
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∆r(iµ) ∆r(jµ)

ϕjλ

��

∆r(iλ) ∆r(jλ)

ϕjµ

��

∆l(iµ)

φiµ

OO

∆l(jµ)

∆l(iλ)

φiλ

OO

∆l(jλ)

Figure 1: Coherence of a cross-section

The following result was obtained by Grillet [10] in the case of semigroups.

Theorem 3.23. Any family {x1λ ∈ 1λ, xi1 ∈ i1|i ∈ I, λ ∈ Λ} can be completed
in a coherent cross-section.

Proof. Let {x1λ ∈ 1λ, xi1 ∈ i1|i ∈ I, λ ∈ Λ}. By definition of L and R,
for any i ∈ I and λ ∈ Λ there exist ti, t

′

i ∈ T 1 and sλ, s
′

λ ∈ S1 such that

xi1 = tix11, x11 = t
′

ixi1 and x1λ = x11sλ, x11 = x1λs
′

λ. Set xiλ = tix11sλ =
tix1λ = xi1sλ. Then computations similar to the semigroup case [10] give that
{xiλ|i ∈ I, λ ∈ Λ} is a coherent cross-section. First, it holds that xjλs

′

λsµ = xjµ,

and tit
′

jxjµ = xiµ for any i, j ∈ I and λ, µ ∈ Λ. Fix i, j ∈ I and λ, µ ∈ λ and let

δt ∈ δ(iλ). Let u,w ∈ S1, v ∈ T 1 such that txiµ = xiµu, vxjµ = xjµu, vxjλ =
xjλw so that φjλϕjµφiµ(δt) = τw. It holds that

txiλ = ttix11sλ = ttix11sµs
′

µsλ

= txiµs
′

µsλ = xiµus
′

µsλ

= tit
′

jxjµus
′

µsλ = tit
′

jvxjµs
′

µsλ

= tit
′

jvxjλs
′

λsµs
′

µsλ = tit
′

jxjλw

= xiλw

so that φiλ(δt) = τw.

Figure 2 describes the construction of the coherent cross-section.
We now interpret cross-sections in terms of biaction of a group. Let H =

11. As for any i, j ∈ I and λ, µ ∈ Λ we have the equality ∆l(iλ) = ∆l(iµ)
and ∆r(iλ) = ∆r(jλ), we can define group isomorphisms aiλ = ϕiλ ◦ φ1λ :
∆l(11) → ∆l(iλ) and biλ = φiλ ◦ ϕi1 : ∆r(11) → ∆r(iλ). The group G =
∆l(11) acts on D on the left by g · x = aiλ(g)(x) for any x ∈ iλ. This is
a group action since g′ · (g · x) = g′ · aiλ(g)(x) with aiλ(g)(x) ∈ iλ, hence
g′ · (g ·x) = aiλ(g

′)(aiλ(g)(x)) = aiλ(g
′g)(x) since aiλ is an isomorphism. Dually
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x11

sλ

))

ti

��

x12 . . . x1λ = x11sλ

ti

��

x21

...
...

xi1 = tix11

sλ

**

. . . xiλ = tix11sλ . . .

Figure 2: Construction of a coherent cross-section

∆r(11) acts on D on the right, and since ∆l(11) and ∆r(11) are isomorphic,
G = ∆l(11) acts also on D on the right by x⊙ g = [x]biλ(φ11(g)).

These group actions are free on D, and always compatible since they are left
and right translations of a biact.

Lemma 3.24. The left and right actions of G (defined as above by a given
cross-section) are free on D, and always compatible.

Proof. By construction, the Schützenberger groups act freely on their respective
H-class, so that the group G acts freely on D. Let g, g′ ∈ G and x ∈ iλ.
Then exists t ∈ stabl(iλ), s ∈ stabr(iλ), aiλ(g

′) = δt and biλ(g) = τs. Thus
g′ · (x⊙ g) = t(xs) = (tx)s = (g′ · x)⊙ g.

Lemma 3.25. The cross section is coherent if and only if

(∀x ∈ iλ, g ∈ G) x⊙ g = [x]φ1λ(g).

Proof. Let i, j ∈ I and λ, µ ∈ Λ. Let also x ∈ iλ and g ∈ G = ∆l(11).
If the cross-section is coherent, then φiλ = φjλϕjµφiµ and x⊙g = biλ(φ11(g)) =
φiλϕi1φ11(g) = [x]φ1λ(g).
Conversely, if the equality holds then φiλϕi1φ11 = φ1λ and since the maps are
bijective, then φiλ = φ1λϕ11φi1. Also φiµ = φ1µϕ11φi1, φjλ = φ1λϕ11φj1 and
ϕjµ = ϕj1φ11ϕ1µ. We finally get

φjλϕjµφiµ = φ1λϕ11φj1ϕj1φ11ϕ1µφ1µϕ11φi1

= φ1λϕ11φi1

= φiλ
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Coherence expresses that the actions of G are actually compatible (in the
sense given below) with the actions of T and S.

Proposition 3.26. If the cross-section is coherent then the monoid biact (G,D,G)
satisfies for any g ∈ G:

1. g · (xs) = (g · x)s for any s ∈ S, x ∈ D such that xRxs;

2. (tx)⊙ g = t(x⊙ g) for any t ∈ T, x ∈ D such that txLx;

3. g · xiλ = xiλ ⊙ g for all i ∈ I, λ ∈ Λ.

Proof. Let g ∈ G, t ∈ T, s ∈ S, x ∈ iλ such that txLxRxs. Pose j = Rtx and
µ = Lxs.

1. By definition (g · x)s = ϕiλφ1λ(g)(x)s, and g · (xs) = ϕiµφ1µ(g)(xs).
As the cross-section is coherent, then the left translations ϕiλφ1λ(g) and
ϕiµφ1µ(g) are equal and (g · x)s = g · (xs).

2. By Lemma 3.25 t(x ⊙ g) = t[x]φ1λ(g), and (tx) ⊙ (g) = [tx]φ1λ(g) with
φ1λ(g) a right translation, so that the two elements are equal.

3. By definition g · xiλ = ϕiλφ1λ(g)(xiλ). Set δv = ϕiλφ1λ(g) with v ∈
stabl(iλ). Then by definition of φiλ, vxiλ = [xiλ]φiλ(δv) thus g · xiλ =
[xiλ]φiλϕiλφ1λ(g) = [xiλ]φ1λ(g). Now since the cross-section is coherent
xiλ ⊙ g = [xiλ]φ1λ(g) by Lemma 3.25. This ends the proof.

4 Structure of stable, J -simple biacts

4.1 Wreath products, tensor products and related con-
structions

We start with general constructions on semigroup acts. Semidirect products
of semigroups, wreath product of semigroups and left (right) acts, and wreath
products of left (right) acts are relatively well-known constructions. We recall
them for convenience, and generalize them to the case where one of the acts in
question is a biact.

Definition 4.1 (Wreath Product). Let M (resp. (M,X), (M,X,N)) be a
semigroup (resp. a left semigroup act, a semigroup biact) and (T, Y ) (resp.
(Z, S)) be a left (resp. right) semigroup act. Then T (resp. S) acts on MY

(resp. NZ) by composition on the right (resp. left).

1. The semidirect product (T, Y ) ≀M = T ⋉MY with product

(t, f)(t′, f ′) = (tt′, (f ◦ δt′)f ′)

(where δt : x 7→ tx) is called the wreath product of (T, Y ) and M .
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2. Dually, the semidirect product N ≀ (Z, S) = NZ ⋊ S with product

(g′, s′)(g, s) = (g′(τs′ ◦op g), s′s)

is called the wreath product of N and (Z, S).

3. The semigroup (T, Y ) ≀M acts on the left on Y ×X by

(t, f) · (y, x) = (ty, f(y)x).

The left act (T, Y ) ≀ (M,X) = ((T, Y ) ≀M,Y × X) is called the wreath
product of (T, Y ) and (M,X).

4. Dually, the semigroup N ≀ (Z, S) acts on the right on X × Z by

(x, z)⊙ (g, s) = (x[z]g, zs).

The right act (X,N) ≀ (Z, S) = (N ≀ (Z, S), X × Z) is called the wreath
product of (X,N) and (Z, S).

5. The biact (T, Y )≀(M,X,N) (resp. (M,X,N)≀(Z, S)) is the 5-uple ((T, Y )≀
M,Y ×X,N,α, β) (resp.(M,X × Z,N ≀ (Z, S), α, β)) with actions

α ((t, f) , (y, x)) = (t, f)·(y, x) = (ty, f(y)x), β ((y, x) , n) = (y, x)⊙n = (y, xn)

(resp. α (m, (x, z)) = m · (x, z) = (mx, z), β ((x, z) , (g, s)) = (x, z) ⊙
(g, s) = (x[z]g, zs)).

6. Finally, we define (T, Y ) ≀ (M,X,N) ≀ (Z, S) as ((T, Y ) ≀M,Y ×X ×Z,N ≀
(Z, S), α, β) with actions

α ((t, f) , (y, x, z)) = (t, f) · (y, x, z) = (ty, f(y)x, z),

β ((y, x, z) , (g, s)) = (y, x, z)⊙ (g, s) = (y, x[z]g, zs).

The actions are indeed compatible as (for instance in 5.) ((t, f) · (y, x))⊙n =
(ty, f(y)xn) = (t, f) · ((y, x)⊙ n). We cannot unambiguously define a wreath
product (T, Y,N) ≀ (M,Z, S), because the left action (of (T, Y ) ≀M on Y × Z)
and the right action (of N ≀ (Z, S) on Y ×Z) will not be compatible in general.

The wreath product of left (right) acts is associative up to an isomorphism
(see, for example, [11]). Incorporating biacts into the picture, we have, more
generally:

Lemma 4.2. Let (M,X,N) be a semigroup biact, and (Ti, Yi) (resp. (Zi, Si))
be left (resp. right) semigroup acts for i = 1, 2, 3. Then

1. (Associativity) ((T1, Y1) ≀ (T2, Y2)) ≀(T3, Y3) ∼ (T1, Y1) ≀((T2, Y2) ≀ (T3, Y3)).

2. (Associativity) (Z1, S1)≀((Z2, S2) ≀ (Z3, S3)) ∼ ((Z1, S1) ≀ (Z2, S2))≀(Z3, S3).

3. (Left action) ((T1, Y1) ≀ (T2, Y2))≀(M,X,N) ∼ (T1, Y1)≀((T2, Y2) ≀ (M,X,N)).
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4. (Right action) (Z1, S1)≀((Z2, S2) ≀ (M,X,N)) ∼ ((Z1, S1) ≀ (Z2, S2))≀(M,X,N).

5. (Compatibility) ((T1, Y1) ≀ (M,X,N))≀(Z1, S1) ∼ (T1, Y1)≀((M,X,N) ≀ (Z1, S1)).

Also ((T1, Y1) ≀ (M,X,N)) ≀ (Z1, S1) ∼ (T1, Y1) ≀ (M,X,N) ≀ (Z1, S1) (defined in
Definition 4.1).

Proof. The proof is just technical, and consists in just computing all the different
products.

Our next lemma studies Green’s relations on wreath products of semigroup
acts.

Lemma 4.3. Let (M,X) (resp. (M,X,N)) be a left semigroup act (resp. a
semigroup biact), and (T, Y ) be a left semigroup act. Let x, x′ ∈ X and y, y′ ∈ Y ,
and assume that M1x =Mx, M1x′ =Mx′, T 1y = Ty, Y 1y′ = Ty′. Then

1. (y, x)L (y′, x′) in (T, Y ) ≀ (M,X) (resp. (T, Y ) ≀ (M,X,N)) if and only if
yL y′ (in (T, Y )) and xLx′ (in (M,X), resp. in (M,X,N)).

2. (y, x)R (y′, x′) in (T, Y ) ≀ (M,X,N) if and only if y = y′ and xRx′ (in
(M,X,N)).

3. (y, x)J (y′, x′) in (T, Y ) ≀ (M,X,N) if and only if yL y′ (in (T, Y )) and
xJ x′ (in (M,X,N)).

Proof. We prove only the first item. Assume that there exist t ∈ T , m ∈ M
such that y′ = ty and x′ = mx. Let f ∈ MY be the constant function m.
Then (t, f) · (y, x) = (ty, f(y)x) = (ty,mx = (y′, x′). Thus (by symmetry)
yL y′ and xLx′ ⇒ (y, x)L (y′, x′). Conversely, assume that there exist t ∈ T ,
f ∈M I such that (t, f) · (y, x) = (y′, x′). Then ty = y′ and f(y)x = x′, and by
symmetry (y, x)L (y′, x′) ⇒ yL y′ and xLx′.

The conclusion may fail without the equality of left ideals, as shows next
example.

Example 4.4. Let T =< t > be the free semigroup of 1 generator t, and G be a
(non trivial) group. Form (T, T )≀(G,G) the wreath product of the left semigroup
acts (T, T ) and (G,G). Let g ̸= h ∈ G. Then gLh in (G,G) and tL t in (T, T ),
but (t, g) ̸= (t, h) are not L-related in (T, T ) ≀ (G,G). Indeed, any element of
T ⋉GT is of the form (tp, f) with p > 0 and (tp, f) · (t, g) = (tp+1, f(t)g) ̸= (t, h)
since p+ 1 > 1.

We deduce the result for right semigroup acts by duality. As a corollary, and
using Lemma 3.2, we get results concerning J ,L,R-simplicity and stability of
wreath products of semigroup acts and biacts.

Corollary 4.5. Let (M,X) (resp. (M,X,N)) be a left semigroup act (resp. a
semigroup biact), and (T, Y ) (resp. (Z, S)) be a left (resp. right) semigroup act.
Then
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1. (T, Y ) ≀(M,X) (or (T, Y ) ≀(M,X,N)) is L-simple (resp. left stable) if and
only if (T, Y ) and (M,X) (or (M,X,N)) are L-simple (resp. left stable).

2. (X,N) ≀ (Z, S) (or (M,X,N) ≀ (Z, S)) is R-simple (resp. right stable) if
and only if (X,N) (or (M,X,N)) and (Z, S) are R-simple (resp. right
stable).

3. (T, Y ) ≀ (M,X,N) is J -simple (resp. stable) if and only if (T, Y ) is L-
simple (resp. left stable) and (M,X,N) is J -simple (resp. stable).

4. (M,X,N) ≀ (Z, S) is J -simple (resp. stable) if and only if (Z, S) is R-
simple (resp. right stable) and (M,X,N) is J -simple (resp. stable).

5. ((T, Y ) ≀ (M,X,N)) ≀ (Z, S) is J -simple (resp. stable) if and only if (T, Y )
is L-simple (resp. left stable), (Z, S) is R-simple (resp. right stable) and
(M,X,N) is J -simple (resp. stable).

We now apply the previous results on wreath products to a specific act, the
full transformation semigroup on a set, and a specific biact, a monoid acting on
itself by left and right multiplication (or even more specifically in some cases, a
group). Precisely, let I be a set and M be a monoid. Let T (I) = (II , ◦) be the
full transformation semigroup on I with composition of functions. The monoid
T (I) acts on I on the left so that (T (I), I) is a left monoid act. Dually, let
Λ be a set. Then (Λ, T op(Λ)) is a right monoid act. Let M be a monoid (we
will mainly consider the case M = G is a group afterwards). Then M acts on
itself on the left and on right by multiplication in a compatible way, so that
(M,M,M) is a monoid biact (where, according to our conventions, M is the
underlying set of M). We can then form the monoid biact

FB(I,M,Λ) = (T (I), I) ≀ (M,M,M) ≀ (Λ, T op(Λ))

=
(
T (I)⋉M I , I ×M × Λ,MΛ ⋊ T op(λ)

)
.

We will call this monoid biact the Full Biact over (I, M , Λ).
The following lemma is straightforward:

Lemma 4.6. Let I,Λ be sets. Then (T (I), I) is L-simple and (Λ, T op(Λ)) is
R-simple. In particular, they are respectively left and right stable.

Proposition 4.7. Let I,Λ be sets and G be a group. Then the monoid biact
FB(I,G,Λ) = (T (I), I) ≀ (G,G,G) ≀ (Λ, T op(Λ)) is J -simple and stable.

Proof. As (T (I), I) is L-simple by Lemma 4.6 and left stable and (G,G,G) is J -
simple and stable, then (T (I), I) ≀ (G,G,G) is J -simple and stable by Corollary
4.5. Still by Corollary 4.5, as also (Λ, T (Λ)) is R-simple and right stable then
FB(I,G,Λ) is J -simple and stable.

The set of R-classes of FB(I,G,Λ) is in bijection with I, its set of L-classes
is in bijection with Λ and each H-class is equipotent with G. An interpretation
of this biact is as follows. Let P = (Piλ) be any sandwich matrix over G and
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form the (completely simple) Rees matrix semigroup C = M(I,G,Λ, P ). From
[22] and [7], see also Proposition 4.1 in [9], the semigroup L(C) of left transla-
tions of C (l(xy) = l(x)y (∀x, y ∈ C)) is isomorphic to (T (I), I) ≀G = T (I)⋉GI ,
and dually the semigroup R(C) of right translations of C is isomorphic to
G ≀ (T op(Λ),Λ) = Gλ ⋊ T (I) so that FB(I,G,Λ) ∼ (L(C), C,R(C)), bi-
act of left and right translations acting on the completely simple semigroup
C = M(I,G,Λ, P ). Conversely, by Rees Theorem any biact of the form
(L(C), C,R(C)) for some completely simple semigroup C is isomorphic to the
biact FB(I,G,Λ) for some sets I,Λ and group G.

It is proved in [11] Theorem 6.18, see also [26], that wreath products of the
type (T (X), X) ≀ (M,M) where M is a monoid can be described by means of
endomorphisms of free M -acts. Precisely, denote by XM = (X × M,M, β)
the free right M -act with basis X and action β ((x,m),m′) = (x,mm′). By
End(XM) we mean Hom((X ×M)M , (X ×M)M ) in the category Right M-
act. The monoid End(XM) acts on X ×M in a canonical way.

Theorem 4.8 ([11] Theorem 6.18).
The left acts (T (X), X) ≀ (M,M) and (End(XM), X ×M) are isomorphic.

Indeed, M -endomorphisms of XM are in bijection with functions from X
to M . In the same spirit, it is not difficult to make the following identification:

Proposition 4.9. Let I,Λ be sets and M be a monoid. Then End(IM) (resp.
Endop(MΛ)) acts on (I×M×Λ) on the left (resp. on the right) by ϕ·(i,m, λ) =
ϕ(i,m)λ (resp . (i,m, λ) ⊙ ψ = i[m,λ]ψ) and these actions are compatible. It
holds that

FB(I,M,Λ) ∼ (End(IM), I ×M × Λ, Endop(MΛ))

We will write EB(I,M,Λ) = (End(IM), I ×M × Λ, Endop(MΛ)), Endo-
morphism Biact over (I,M,Λ).

We can use the following classical notation to describe this biact. Write
any element x = (i,m, λ) by juxtaposition, x = imλ. Then ϕ · (imλ) ⊙ ψ =
ϕ(i1)m[1λ]ψ for ϕ ∈ End(IM), ψ ∈ Endop(MΛ).

We can also describe this biact in terms of tensor products when M = G
is a group (the situation we will encounter later). Consider the two biacts
(End(IG), I×G,G) and (G,G×Λ, Endop(GΛ)). Then some calculations prove
that their tensor product is isomorphic to (End(IG), I ×G× Λ, Endop(GΛ)):

(End(IG), I×G,G)⊗(G,G×Λ, Endop(GΛ) ∼ (End(IG), I ×G× Λ, Endop(GΛ)) .

Indeed, by introducing tossings [11] in the picture, we can prove that (i, g) ⊗
(h, λ) = (i′, g′) ⊗ (h′, λ′) if and only if i = i′, gh = g′h′ and λ = λ′ so that
(i, g) ⊗ (h, λ) 7→ (i, gh, λ) is a bijection from (I × G,G) ⊗ (G,G × Λ) onto
I ×G× λ that respects the left and right actions.
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We can finally represent this biact as square matrices acting on (non-square)
matrices over a monoid with zero (denoted by ⋆ afterwards). Indeed, define
Mc

I,I(M) as the I × I matrices with coefficients in the monoid M
⋃
{⋆} (with ⋆

the zero of the monoid) such that each column contains exactly one coefficient
in M , and the others ⋆. Such matrices are sometimes called column-monomial
matrices (overM). Define a partial sum onM

⋃
{⋆} by ⋆+⋆ = ⋆ and ⋆+m = m

for any m ∈M , and the product on MI,I(M) by the classical formula

A×B(i, j) =
∑
k∈I

A(i, k)B(k, j).

Then End(IM) ∼ MI,I(M) with isomorphism given by ϕ 7→ Aϕ, withAϕ(i, j) =
m if ϕ(j1) = im and ⋆ otherwise. Dually, we can define Mr

Λ,Λ(M) (each
row contains exactly one coefficient in M i.e. row-monomial matrices) and
identify Endop(MΛ) ∼ Mr

Λ,Λ(M) with isomorphism given by ψ 7→ Bψ, with
Bψ(λ, µ) = m if [1λ]ψ = mµ. Finally define Ms

I,Λ(M) as the I × Λ matrices
with coefficients in M

⋃
{⋆} such that exactly one coefficient is in M , in bijec-

tion with (I ×M × Λ) by x = (i,m, λ) 7→ Cx such that Cx(i, λ) = m and (⋆
otherwise). Matrix multiplication (on the left and on the right) define a monoid
biact

M(I,M,Λ) = (Mc
I,I(M),MI,Λ(M),Mr

Λ,Λ(M)).

Proposition 4.10. With the above notations, it holds that

EB(I,M,Λ) ∼ M(I,M,Λ)

Proof. We only have to check that the previous isomorphisms preserve the biac-
tion, or equivalently the left and right actions. We consider the left action (the
right action is dual). Let ϕ ∈ End(IM) and x = (i,m, λ) in I ×M × Λ. Then
ϕ · x = ϕ(i1)mλ = jm′mλ for some j ∈ I,m′ ∈M . Define Aϕ and Cx as above.
Then [AϕCx](k, l) = ⋆ if l ̸= λ, and [AϕCx](k, λ) = Aϕ(k, i)m = ⋆ if k ̸= j and
m′m if k = j. This ends the proof.

Example 4.11. We illustrate (some of) the various representations on a toy
example. Let I = {1, 2} and M =< m >1 be the monoid generated by m. An
element of T (I) ⋉M I is a function from I to I ×M . Consider for instance f
with f(1) = (2,m) and f(2) = (2,m3). We associate to f theM -endomorphims
of IM ϕf defined by ϕf (1m

k) = 2mk+1 and ϕf (2m
k) = 2mk+3, and then to

ϕ = ϕf the matrix

Aϕ =

(
⋆ ⋆
m m3

)
.

Let finally x = (1,m2). Then f · x = (f(1), f(1)m2) = (2,m3). Equivalently
ϕ · (1m2) = 2m3 and

Aϕ

(
m2

⋆

)
=

(
⋆ ⋆
m m3

)(
m2

⋆

)
=

(
⋆
m3

)
.
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4.2 Stable, J -simple biacts

We are now in position to produce a structure theorem for stable, J -simple
semigroup biacts.

Let X = (T,X, S) be a stable, J -simple semigroup biact. Let {xiλ, i ∈
I, λ ∈ Λ} be a coherent cross-section of X and set G = H11. Any element
x ∈ iλ may be uniquely written as (i, g, λ) with g the unique element of G such
that g · xiλ = x = xiλ ⊙ g, so that X ∼ I ×G× Λ. We now describe the action
of t ∈ T on x.

Lemma 4.12. Let i ∈ I, t, t′ ∈ T and x ∈ i. Pose j = R(txi1) the R-class of
txi1. Then tx ∈ j and t′txR t′xj1.

Proof. By stability, txi1 Lxi1 and by Green’s Lemma 3.6 left translation by t
maps the R-class i to the R-class j. By the same arguments, left translation by
t′ maps the R-class j to a R-class and t′(tx)R t′xj1.

We locate the product tx in its H-class as follows. Let x ∈ iλ, x ∼ (i, g, λ)
(or equivalently x = xiλ⊙g) and t ∈ T . By stability txLx, and by Lemma 4.12
txR txi1 so that tx ∼ (j, g′, λ) with j = R(txi1) and g

′ ∈ G the unique element
such that tx = xjλ ⊙ g′. By Proposition 3.26 tx = t(xiλ ⊙ g) = (txiλ) ⊙ g. As
txiλ ∈ jλ then exists a unique gλm ∈ G, gλt · xjλ = txiλ = xjλ ⊙ gλt , and finally
g′ = gλt g, and tx ∼ (R(txi1), g

λ
t g, λ).

We end up with a family of functions ϕλ from T to (I × G)I ∼ II × GI

which send t ∈ T to the function i 7→ (R(txi1), g
λ
t ) where gλt is the unique

solution to gλt · xjλ = txiλ = xjλ ⊙ gλt . We finally show that these functions
are equal (independent of λ). By construction of the coherent cross-section
(Theorem 3.23) there exists sλ ∈ S1 such that xkλ = xk1sλ for all k ∈ I. As
g1t · xj1 = txi1 = xj1 ⊙ g1t then (g1t · xj1)sλ = (txi1)sλ and by Proposition 3.26,
g1t · (xjλ) = g1t · (xj1sλ) = txi1sλ = txiλ. Thus ϕλ is independent of λ. We
denote this function by ϕ afterwards.

Lemma 4.13. Function ϕ : T → (T (I), I) ≀ G is a morphism of semigroups
such that the left act (ϕ(T ), I × G) is L-simple. It is one-to-one if and only if
T acts faithfully on X.

Proof. Let t, t′ ∈ M and pose ϕ(t) = (τ, f), ϕ(t′) = (τ ′, f ′). Let i ∈ I. By
definition of the wreath product, ϕ(t)ϕ(t′)(i) = (τ, f)(τ ′, f ′) = (τ ◦τ ′, (f ◦τ ′)f ′).
Pose j = τ ′(i) = R(t′xi1) and k = τ(j) = R(txj1). Pose also g′ = f ′(i) the
solution to g′ · xj1 = t′xi1 = xj1 ⊙ g′ and g = f(j) the solution to g · xk1 =
txj1 = xk1 ⊙ g. As R is a right congruence and t′xi1 Rxj1 then tt′xi1 R txj1
and tt′xi1 ∈ k. Pose g′′ = gg′. Then

xk1 ⊙ gg′ = (xk1 ⊙ g)g′

= (txj1)⊙ g′

= t(xj1 ⊙ g′) by Proposition 3.26

= t(t′xi1)
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and finally, ϕ(tt′) = ϕ(t)ϕ(t′).
Let i, j ∈ I and g, h ∈ G. As xi1 Lxj1 ⊙ hg−1 then there exists t ∈ T 1 such
that txi1 = xj1 ⊙ hg−1. If t = 1 then i = j and hg−1 = 1 (the action is free)
and (i, g) = (j, h) are indeed L-related. So assume t ∈ T . By definition of ϕ,
it holds that ϕ(t)(i) = (j, hg−1) and ϕ(t) ⊙ (i, g) = (j, hg−1g) = (j, h). This
proves that (ϕ(T ), I ×G) is L-simple.
Finally let x ∈ iλ, x = xiλ ⊙ g, and let t, t′ ∈ T . Then tx = t′x ⇔ (txiλ)⊙ g =
(t′xiλ)⊙ g by Proposition 3.26, and since G is a group this happens if and only
if txiλ = t′xiλ if and only if txi1 = t′xi1, that is ϕ(t)(i) = ϕ(t′)(i). This ends
the proof.

Theorem 4.14. Let X = (T,X, S) be a faithful, stable, J -simple semigroup
biact. Then there exist two sets I,Λ, a group G and a subact (TI , I×G×Λ, SΛ)
of FB(I,G,Λ) such that:

1. (TI , I ×G) is L-simple;

2. (G× Λ, SΛ) is R-simple;

3. (T,X, S) ∼ (TI , I ×G× Λ, SΛ).

Conversely, any semigroup biact of this form is faithful, stable, and J -simple.

Proof. Let I (resp. Λ) be the set of R-classes (resp. L-classes) of X. Let
{xij , (i, λ) ∈ I×Λ} be a coherent cross-section and G the Schützenberger group
of 11. Define as previously the map Φ = (ϕ, f, ψ) by

1. For all t ∈ T , ϕ(t) : i 7→ (j, gt) with j = R(txi1) and gt is the unique
solution to gt · xj1 = mxi1 = xj1 ⊙ gt;

2. For all x ∈ X, f(x) = (i, g, λ) with i = Rx, λ = Lx and g the unique
element of G such that g · xiλ = x = xiλ ⊙ g;

3. For all s ∈ S, ψ(s) : λ 7→ (gs, µ) with µ = L(x1λs) and gs is the unique
solution to gs · x1µ = tx1λ = x1µ ⊙ gt.

By definition of the Schützenberger group f is a bijection, and by Lemma 4.13,
ϕ : T → (T (I), I) ≀ G is a injective morphism of semigroups such that the left
act (ϕ(T ), I ×G) is L-simple. Dually, ψ is an injective morphism of semigroups
such that the right act (G × Λ, ψ(S)) is R-simple. Also by Proposition 3.26,
and since the biact is stable, Φ = (ϕ, f, ψ) is a morphism of biacts.
The converse is straightforward.

In this theorem, the set I (resp. Λ) is equipotent with the set of R-classes
(resp. of L-classes) of X and G is isomorphic to any Schützenberger group of
X. If we drop the faithfulness conditions, then we get that any stable, J -simple
semigroup biact admits an epimomorphism onto a biact (TI , I×G×Λ, SΛ) that
satsifes the above conditions, bijective on the second variable.

Regarding embeddings, we have realized X = (T,X, S) as a subact of
FB(I,G,Λ). Equivalently, X can be seen as the underlying set of a completely
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simple semigroup C, and T (resp. S) as a certain subsemigroup of left (resp.
right) translations of C.

Corollary 4.15. Let X = (T,X, S) be a faithful, stable, J -simple semigroup
biact. Then there exist a completely simple semigroup C, and subsemigroups
TL ⊴ L(C), SR ⊴ R(C) (of left and right translations) such that:

1. (∀x, y ∈ C) xLy in C if and only if xLy in (TL, C);

2. (∀x, y ∈ C) xRy in C if and only if xRy in (C,RS);

3. (T,X, S) ∼ (TL, C, SR).

Conversely, any semigroup biact of this form is faithful, stable, and J -simple.

Proof. Assume thatX = (T,X, S) is faithful, stable, and J -simple. Then
(T,X, S) ∼ (TI , I × G × Λ, SΛ) where (TI , I × G) is L-simple and (G × Λ, SΛ)
is R-simple. Define C = M(I,G,Λ, P ) with sandwich matrix P = (1). Then
TI defines a set TL of left translations of C by t(i, g, λ) = (t.(i, g), λ) since
t[(i, g, λ)(j, h, µ)] = t(i, gh, µ) = (t.(i, gh), µ) = (t.(i, g), λ)(j, h, µ) since T acts
on I × G by G-endomorphims. By definition of the left translation associated
to t, (i, g, λ)L (j, gµ) in (TL, C) if and only if λ = µ and (i, g) and (j, µ) are
L-related in (TI , I × G) if and only if λ = µ if and only if xL y in C. We
conclude by duality.
The proof of the converse is similar.

We can actually form another embedding, intermediate between (TI , I×G×
Λ, SΛ) and FB(I,G,Λ), that will prove interesting to iterate the decomposition
process (see next section). Write ϕ = (ϕ1, ϕ2), where ϕ is the map defined
previously. Then ϕ1(T ) = T T

I is a subsemigroup of T (I) such that (T T
I , I) is

L-simple, and we have ϕ(T ) ⊴ T T
I ⋉GI ⊴ T (I)⋉GI so that:

Corollary 4.16. Let X = (T,X, S) be a faithful, stable, J -simple semigroup
biact. Then there exist two sets I,Λ, a group G, a left subact (T T

I , I) of (T (I), I)
and a right subact (Λ, ST

Λ ) of (Λ, T op(Λ)) such that:

1. (T T
I , I) is L-simple;

2. (Λ, ST
Λ ) is R-simple;

3. (T,X, S) ↪→ (T T
I , I)≀(G,G,G)≀(Λ, ST

Λ ) with T → T T
I onto, X → I×G×Λ

a bijection and S → ST
Λ onto.

Conversely, any semigroup biact of this form is faithful, stable, and J -simple.

Proof. We only prove that (T T
I , I) is faithful and L-simple. As T T

I are functions
on I, the act (T T

I , I) is clearly faithful. We prove that it is L-simple. Let
i = Rx, j = Ry ∈ I. Then there exists t ∈ T such that tx = y by L-simplicity.
Pose ϕ(t) = (r, g), f(x) = (i, h) and f(y) = (j, k). Then (j, k) = f(y) = f(tx) =
ϕ(t)f(x) = (r, g)(i, h) = (r(i), g(i)h) and r(i) = j with r ∈ T T

I . The left act
(T T
I , I) is L-simple.

24



We deduce from Theorems 4.8 and 4.14 a second equivalent characterization
of stable, J -simple biacts.

Corollary 4.17. Let I,Λ be two sets and G a group. Let TI ⊴ End(IG) (resp.
SΛ ⊴ Endop(GΛ)) be a subsemigroup of the endomorphism monoid of the free
right G-act over I (resp. of the (opposite of the) endomorphism monoid of
the free left G-act over Λ) such that (∀i ∈ I)TI(i, 1) = I × G (resp. (∀λ ∈
Λ)[(1, λ)]SΛ = G×Λ). Then the biact (TI , I ×G×Λ, SΛ) is faithful, stable and
J -simple.
Conversely, any faithful, stable, J -simple semigroup biact is isomorphic to a
biact of this form.

Proof. The left act (TI , I×G) is L-simple if and only if (∀i ∈ I, ∀g ∈ G)TI(i, g) =
I ×G if and only if (∀i ∈ I)TI(i, 1) = I ×G, and dually.

Such subsemigroups are coined transitive subsemigroups of End(IG) in [16].
Finally, Proposition 4.10 allows a description by matrices:

Corollary 4.18. Let I,Λ be two sets and G a group. Let TI ⊴ Mc
I,I(G) (resp.

SΛ ⊴ Mr
Λ,Λ(G)) be a subsemigroup of the monoid of matrices over G∪{⋆} such

that for all i, j ∈ I and all g ∈ G, there exists M ∈ TI ,M(i, j) = g and dually
for all λ, µ ∈ Λ and all g ∈ G, there exists M ∈ SΛ,M(λ, µ) = g. Then the
biact (TI ,Ms

I,Λ(G), SΛ) is faithful, stable and J -simple.
Conversely, any faithful, stable, J -simple semigroup biact is isomorphic to a
biact of this form.

Example 4.19. Let G be a group and H,K be subgroups of G such that
HK = G, and consider the monoid biact X = (H,G,K) with multiplication
as actions. The actions are free since G is a group hence faithful. Let g =
hk ∈ G, h ∈ H, k ∈ K. Then HgK = HhkK = HK = G and G is J -
simple. Let also g = h′k′ ∈ G, h′ ∈ H, k′ ∈ K. Then gL g′ if and only if
Hg = Hg′ and it is left stable Moreover we can identify the set Λ of L-classes
with the left coset space H/G. Dually it is right stable with I ∼ G\K. Finally
gH 1 ⇔ g ∈ H ∩ K and we may take as Schützenberger group the group
H ∩ K. By Theorem 4.14, X admits an embedding into the wreath product
(T (G\K), G\K) ≀ (H ∩K,H ∩K,H ∩K) ≀ (H/G, T op(H/G)) (bijective on its
second coordinate).
For instance let Z15 be a group of order 15 and Z3 and Z5 be the Sylow p-groups
of Z15 with order 3 and 5 respectively. They are normal subgroups so that
Z3Z5 is a subgroup of Z15 (that contains Z3 and Z5). By Lagrange Theorem,
we get that Z3Z5 = Z15. Also Z3 ∩ Z5 = {1}. The biact (Z3, Z15, Z5) (with
multiplication as actions) is faithful, J -simple and stable. By Theorem 4.14, it
admits an embedding into the wreath product (T (3),3) ≀ (1, 1, 1) ≀ (5, T op(5))
(where n is a set with n elements). On the other hand, the biact (Z15, Z15, Z5)
(with multiplication as actions) admits an embedding into the wreath product
(T (3),3) ≀ (Z5, Z5, Z5).
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Example 4.20. Consider the setup of Example 4.19, with G a group and H,K
subgroups of G such thatHK = G. By Corollary 4.17, X = (H,G,K) is isomor-
phic to (M,G\K× (H ∩K)×H/G,N) with M a submonoid of End(G\K(H ∩
K)) and N a submonoid of Endop((H∩K)H/G). Since H and K are groups, so
are M and N . Thus M (resp. N) is a transitive subgroup of the automorphism
group of the right (H ∩ K)-act G\K(H ∩ K) (resp. of the left (H ∩ K)-act
((H ∩K)H/G).

Example 4.21. Let S = M(I,G,Λ, P ) be a completely simple semigroup and
define X = (S, S, S). This biact is faithful. We construct

Y = (T (I), I) ≀ (G,G,G) ≀ (Λ, T op(Λ)) =
(
T (I)⋉GI , I ×G× Λ, GΛ ⋊ T op(λ)

)
and define the map Φ = (ϕ, f, ψ) : X → Y as follows:

1. ϕ : S → T (I)⋉GI maps t = (j, g, λ) to the function i 7→ (j, gpλi);

2. f : S → I ×G× Λ is the identity function on S;

3. ψ : S → GΛ ⋊ T op(λ) maps s = (i, g, µ) to the function λ 7→ (pλig, µ).

Obviously, X = (S, S, S) is also isomorphic to the biact defined by the semi-
groups of inner left and right translations of the completely simple semigroup
S acting on S.

It comes to no surprise that the representation of a completely simple semi-
group in Rees matrix form also entails a simple representation of the associated
biact in terms of a matrix biact.

Example 4.22. Consider the setting of Example 4.21, with S = M(I,G,Λ, P )
a completely simple semigroup and X = (S, S, S). Pose Y = Ms

I,Λ(G) (set
of matrices indexed by I × Λ with all coefficients ⋆ except a single one in G)
and define SI = Y P subsemigroup of Mc

I,I(G) , SΛ = PY subsemigroup of
Mr

Λ,Λ(G). Then X ∼ (Y P, Y, PY ), where ϕ : t 7→ CtP , f : x 7→ Cx and
ψ : s 7→ PCs, t, x, s ∈ S with C(i,g,λ) the matrix with g in position i, λ and ⋆
otherwise.

4.3 Structure of completely stable semigroup biacts

We now apply the previous results to completely stable semigroup biacts. Let
X = (T,X, S) be a faithful, completely stable semigroup biact. Then by Lemma
3.17 TXS is the coproduct of its J -classes (in (T,S)-biacts), which are stable
and J -simple. Let Ω denote the set of J -classes of X. For any ω = Jx ∈ Ω,
(T, ω, S) is a stable, J -simple biact but not faithful in general. By the previous
results, there exist (for each ω ∈ Ω) two sets Iω and Λω, a group Gω and
two subsemigroups Tω ⊴ EndGω (IωGω) and Sω ⊴ EndopGω

(GωΛω) such that
(T, ω, S) admits a surjective morphism onto (Tω, Iω × Gω × Λω, Sω) with the
central map a bijection, (Tω, Iω×Gω) is L-simple and (Gω×Λω, Sω) isR-simple.
Denote this morphism by Φω = (ϕω, fω, ψω). Finally, form the direct product of
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the previous semigroups Q = Πω∈ΩTω, subsemigroup of Πω∈ΩEnd(IωGω), and
P = Πω∈ΩSω, subsemigroup of Πω∈ΩEndGω (Gωλω). These semigroups act on
Y =

⋃
ω∈Ω Iω ×Gω × Λω by (tω, ω ∈ Ω) · y = tω′y for y ∈ Iω′ ×Gω′ × Λω′ , and

dually. Define Φ = (ϕ, f, ψ) : (T,X, S) → (Q,Y, P ) by ϕ : t 7→ (ϕω(t), ω ∈ Ω),
f(x) = fω′(x), x ∈ ω′ and ψ : s 7→ (ψω(s), ω ∈ Ω). As (T,X, S) is faithful,
the morphism Φ is a monomorphism and by construction, ϕ(T ) is a subdirect
product of Q = Πω∈ΩTω. Finally, we have proved half of the following statement
(which converse is routine):

Corollary 4.23. Let (T,X, S) be a faithful, completely stable semigroup biact.
Then there exists a set Ω, and for each ω ∈ Ω two sets Iω and Λω, a group
Gω and two subsemigroups Tω ⊴ EndGω

(IωGω) and Sω ⊴ EndopGω
(GωΛω) such

that:

� (Tω, Iω ×Gω) is L-simple;

� (Gω × Λω, Sω) is R-simple;

� (T,X, S) is isomorphic to (Q′, Y, P ′) with Y =
⋃
ω∈Ω Iω × Gω × Λω, Q

′

is a subdirect product of Q = Πω∈ΩTω and P ′ is a subdirect product of
P = Πω∈ΩSω.

Conversely, any semigroup biact (Q′, Y, P ′) of this form is a faithful, completely
stable semigroup biact.

The matrix representation appears to be very convenient for the study of
coproducts.

Corollary 4.24. Let Iω,Λω be sets and Gω groups indexed by ω ∈ Ω, and let
I,Λ and G denote their respective disjoint unions over Ω. Let TI ⊴ Mc,block

I,I (G)

(resp. SΛ ⊴ Mr,block
Λ,Λ (G)) be a subsemigroup of the semigroup of block diagonal

matrices with respect to the decomposition I =
⋃
ω∈Ω Iω with coefficients in

Gω ∪ {⋆} respectively for each block such that for all i, j ∈ Iω, g ∈ Gω there

exists M ∈ Mc,block
I,I (G) such that M(i, j) = g (resp. for all λ, µ ∈ Λω, g ∈

Gω there exists M ∈ Mr,block
Λ,Λ (G) such that M(λ, µ) = g). Then the biact

(TI ,Ms,block
I,Λ (G), SΛ) is faithful and completely stable, where Ms,block

I,Λ (G) is the
set of matrices indexed by I×Λ with all coefficients ⋆ except a single one in Gω
on some row i ∈ Iω and column λ ∈ Λω, for some ω ∈ Ω .
Conversely, any faithful completely stable biact is isomorphic to a biact of this
form.

Example 4.25. Let C be a completely regular semigroup. Then it is a semi-
lattice E of its J -classes Je, which are completely simple semigroups. Let T =
Πe∈EL(Je) direct product of left translations of Je, and dually S = Πe∈ER(Je).
Then (T,C, S) is a faithful, completely stable semigroup biact. The matrix
representation of each completely simple J -classes Je entails the previous de-
scriptions.
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5 Application - Decomposition of certain com-
pletely stable left acts

We first consider the subclass of L-simple left acts, and give structure theorems
for these left acts. Then we produce a second structure theorem for completely
stable left acts.

5.1 Decomposition of L-simple left acts

Let (T,X) be a faithful, L-simple left semigroup act (one also says that the (left)
action of T on X is transitive), and consider any subgroup G ⊴ Autop(TX),
automorphism monoid of the T -act TX (with opposite composition as prod-
uct). First, we recover Oehmke and Steinberg’s results by studying the biact
(T,X,G)).

Lemma 5.1. Let (T,X) be a faithful L-simple left monoid act and let G be any
subgroup of Autop(TX). Then X carries a (T,G)-biact structure such that X
is J -simple, I set of R-classes is equipotent to (X\G), space of right cosets, Λ
set of L-classes is a one element set, and we can identify any Schützenberger
group with G.

Proof. By definition of G, X carries a (T,G)-biact structure. As X is L-simple,
it is left stable. It is right stable since G is a group (hence [x]gg−1 = x for
all x ∈ X, g ∈ G). It is J -simple since it is L-simple by assumption. Still by
L-simplicity, R-classes and H-classes coincide, and since G is a group Hx = xG
for all x ∈ X, so that I is equipotent to (X\G), space of right cosets. Also
we can identify any Schützenberger group with G. More precisely, ∆r(L) = G,
where L = X is the only L-class of X.

Then, as direct consequences of Corollary 4.18 and Theorem 4.14 we deduce
the following lemmas:

Corollary 5.2. Let (T,X) be a faithful L-simple left semigroup act and let G
be any subgroup of Autop(TX). Then X = (T,X) admits an embedding into
(Mc

I,I(G),Ms
I,1(G)).

Thus we realized (T,X) as a semigroup of column-monomial matrices over a
group G acting on a “vector space” of monomial vectors over G, which is exactly
the purpose of Oehmke’s main Theorem[20]. But our corollary shows that the
assumption of Oehmke that T has a left simple left ideal with idempotent is
superflous.

Corollary 5.3. Let (T,X) be a faithful L-simple left semigroup act and let G
be any subgroup of Autop(TX). Then X = (T,X) admits an embedding into
the wreath product (T (X\G), (X\G)) ≀ (G,G) bijective on its second coordinate
(equivalently, into the left act (End((X\G)G), (X\G) × G), where (X\G)G =
((X\G)×G,G) is the free right G-act with basis (X\G)).

28



This is an analogue of the Kaloujnine-Krasner Theorem[12]. Actually, this
extension to monoid acts has already been obtained directly in a very close
formulation by Steinberg[27] Corollary 3.17 (for right monoid transitive actions).

We deduce the following simplification for commutative semigroups (see also
[5] Lemmas 9, 10 and Theorem 11):

Corollary 5.4. Let (T,X) be a faithful L-simple left monoid act, with T com-
mutative semigroup. Then T is a group and (T,X) ∼ (T, T ).

Proof. Let (T,X) be a faithful L-simple left monoid act, with T commutative
semigroup, and pose G = Autop(TX). We can identify T with a subsemigroup
of G (T ⊴ G) since T is commutative. Thus (T,X,G) is R-simple and X
consists of a single H-class, so that X ∼ G by Lemma 5.1. Let x ∈ X. We have
G = ∆r(Lx) ∼ ∆l(Rx) ∼ stabl(Hx). We prove that ε : stabl(Hx) → T , δt 7→ t
is well defined and an isomorphism. Let t, t′ ∈ T such that δt : Hx → Hx and
δt′ : Hx → Hx are equal, and let y ∈ X. As yLx then exists s ∈ T, y = sx so
that ty = tsx = stx = st′x = t′sx = t′y, and t and t′ are equal by faithfulness.
Thus ε is well defined and as δss′ = δsδ

′
s for any s, s ∈ T it is a morphism.

Conversely, let t ∈ T and x ∈ X. As (T,X) is L-simple then txLx and exists
r ∈ T , rtx = x so that tx = [x]gt, x = [tx]gr where gt and gr ∈ G are the
automorphisms induced by t and r. Finally t ∈ stabl(Hx) and the map d; t 7→ δt
is a well defined morphism from T to stabl(Hx). By definition the maps ε and
d are reciprocal, hence isomorphisms.

Example 5.5. Let A = (]0, 1], .) acting on A =]0, 1[ by α(a, y) = ya(∀a ∈
A, y ∈ A) and form the semidirect product A ⋉ A with product (a, b)(a′, b′) =
(aa′, b(b′)a). Let (U, .) be the group of units of (C, .) viewed as a multiplicative
monoid, and D∗ = {z ∈ C, 0 < |z| < 1} the open unit disk of C∗. Then
T = (A⋉A)×U acts faithfully on D∗ on the left by (a, b, η) · z = b|z|a−1zη (for
any (a, b, η) ∈ T and z ∈ D∗). Some calculations prove that (T,D∗) is L-simple:
let z = reiθ, z′ = r′eiθ

′ ∈ D∗. As r′ < 1 and 0 < r then lima→0 r
a = 1 > r′ and

exists a ∈]0, 1[, ra ≥ r′. Choose such an element a, and define b = r′/ra. Let
finally η = ei(θ

′−θ). Then (a, b, η) · z = b|z|a−1zη = braeiθη = r′eiθ
′
= z.

We now find a decomposition as in Corollary 5.3. First, the group U acts on
D∗ on the right by multiplication, and this action is compatible with the action
of T . Indeed, ((a, b, η).z)⊙ ζ = b|z|a−1zηζ = b|z|a−1|ζ|a−1zζ = ((a, b, η).(z ⊙ ζ)
since |ζ| = 1. It follows that U is a subgroup of Autop(TD

∗). Second, it holds
thatD∗ =]0, 1[×U , and the elements of T define endomorphims of the free U -act
]0, 1[U since (a, b, η) · (rζζ ′) = braηζζ ′ = ((a, b, η) · (rζ)) ζ ′ (for any (a, b, η) ∈ T
and 0 < r < 1, η ∈ U). Thus (T,D∗) embeds in (End(]0, 1[U), ]0, 1[×U) with
the monomorphism bijective on its second coordinate.

We finally consider the finite case, and use the embedding (rather than the
isomorphism) result (Corollary 4.16) to get an iterated decomposition. First,
from Lemma 5.1 and Corollary 4.16 we deduce the following lemma.

Lemma 5.6. Assume X finite, |X| = n. Then either Aut(TX) = {1X} or
exist a set I, |I| < n, and a group G, |G| ≥ 2 such that X = (T,X) admits an
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embedding bijective on its second coordinate into a wreath product (TI , I) ≀(G,G)
with T → TI onto and (TI , I) a faithful, L-simple left semigroup subact of
(T (I), I).

As above, we can take G = Autop(TX) as a Schützenberger group of X,
and identify I with the space of right cosets X\G. By construction, X carries
a right action of G = Autop(TX) that is T -equivariant.

By iteration of Lemma 5.6 on faithful, L-simple left semigroup acts until
their automorphism group is trivial we get:

Corollary 5.7. Let (T0, X0) be a faithful L-simple semigroup left act with X
finite. Then there exist finite sequences:

� of non-trivial groups G1, . . . , Gp;

� of semigroups T1, . . . , Tp;

� of sets X1, . . . , Xp;

such that for any k = 1, . . . , p:

1. Each group Gk acts on Xk−1 on the right, and the action is Tk−1-equivariant;

2. Xk ∼ Xk−1\Gk;

3. Tk acts on Xk on the left and each left act (Tk, Xk) is faithful and L-
simple;

4. (Tk−1, Xk−1) admits an embedding, bijective on its second coordinate, into
the wreath product (Tk, Xk) ≀ (Gk, Gk), with Tk−1 → Tk onto;

and such that finally Aut(Tp
Xp) is trivial. Moreover, we can take Gk ∼ Autop(Tk−1

Xk−1)
for all k = 1, . . . , p.

In particular (T0, X0) embeds in the iterated wreath product (Tp, Xp) ≀
(Gp, Gp) ≀ (Gp−1, Gp−1) ≀ . . . ≀ (G1, G1). Using the dual construction we get:

Corollary 5.8. Let (T,X, S) be a faithful J -simple semigroup act with X finite.
Then there exist:

1. a finite sequence of non-trivial groups G0, G
l
1, . . . , G

l
p, G

r
1, . . . , G

r
q;

2. a L-simple left act (Tp, Xp) such that Aut(Tp
Xp) is trivial;

3. and a R-simple left act (Xq, Tq) such that Autop((Xq)Sq
) is trivial

such that (T,X, S) embeds in the iterated wreath product

(Tp, Xp) ≀ (Glp, Glp) ≀ . . . ≀ (Gl1, Gl1) ≀ (G0, G0, G0) ≀ (Gr1, Gr1) ≀ . . . ≀ (Grq, Grq) ≀ (Xq, Sq)

Finally, for a finite, L-simple left semigroup act, it happens that End(TX) =
Aut(TX) (this was recognized in [27] Proposition 2.4, and also appears in Chen’s
Thesis[4]):
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Proposition 5.9. Let (T,X) be a L-simple left semigroup act with X finite.
Then End(TX) = Aut(TX).

Proof. Let f ∈ Endop(TX). Then [X]f is a T -subact of X and by L-simplicity
[X]f = X, thus f is surjective. As X is finite then f is bijective, and its
reciprocal being an endomorphism, f ∈ Autop(TX).

5.2 Structure of completely stable left semigroup acts

Regarding completely stable left semigroup acts, we have:

Corollary 5.10. Let (T,X) be a faithful left semigroup act, completely left
stable. Then (T,X,Autop(TX)) is faithful and completely stable.

In particular, it decomposes as in Corollaries 4.23 or 4.24.

Proof. By the previous results, (T,X,Autop((TX)) is a faithful completely left
stable biact. Let x ∈ X, g ∈ Autop(TX). Then [x]gg−1 = x and [x]gRx, so
that the biact is completely right stable.

Example 5.11. We consider the semigroup T = (A⋉A)× U of Example 5.5,
and define a left action of T on C by:

(a, b, η) · 0 = 0
(a, b, η) · z = b|z|a−1zη if 0 < |z| < 1
(a, b, η) · z = zη if |z| = 1
(a, b, η) · z = b−1|z|a−1zη if 1 < |z|

The same calculations as in Example 5.5 show that it is completely left
stable, hence the coproduct of its L-classes. There are exactly four L-classes:
{0}, D∗, U and {z ∈ C, |z| > 1}. As (T,C) is also faithful, it decomposes as in
Corollary 4.23: (T,C) is isomorphic to (T ′, Y ) with

Y = {0} ∪ (]0, 1[×U) ∪ U ∪ (]1,+∞[×U)

and T ′ a subsemigroup of the semigroup of functions (C[0,+∞[, .) with pointwise
multiplication that leave invariant each of the previous sets {0}, (]0, 1[×U), U ,
(]1,+∞[×U), and whose action is transitive on each set.

6 Conclusion and perspectives

The results obtained in this article plaid in favor of a thorough study of semi-
group biacts and Green’s relations upon them, as it has been the case for
semigroups. There are however at least two major and obvious obstacles to
a straightforward rewriting of the existing semigroups results. One is the lack
of symmetry between the semigroups and the set on which they act. The second
is the absence of “idempotents” in semigroup biacts. This renders for instance
constructions defined for regular semigroups (that play a prominent role in the
local structure theory of semigroups) not directly attainable.
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In forthcoming papers, we will try to pursue this research and study notably
minimal subacts (“kernels”), Rees quotients and traces of D-classes (biacts with
zero), finitness properties based on Green’s relations, and extensions of the
Green’s relations.
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